360 research outputs found

    Principles of Molecular Oncology: Second Edition

    Get PDF

    Age and Growth of Spotted Sand Bass, Paralabrax maculatofasciatus, in Bahia de Los Angeles, Baja California, Mexico, with Age Validation using Otolith Edge Analysis

    Get PDF
    Spotted sand bass, Paralabrax maculatofasciatus, were collected from Bahia de Los Angeles, Baja California, Mexico covering as wide a size range as possible over four seasons (spring, summer, fall, and winter). Age was estimated and growth parameters calculated from growth zones counted in transverse otolith sections. An otolith edge analysis indicated an opaque growth zone was deposited once per year during the summer, validating the annual periodicity. Spotted sand bass from this region are fast growing with a relatively short life span of up to 11 years. Growth differs from the disjunct Pacific coast population by having a higher growth rate and a shorter longevity

    High refractive index of melanin in shiny occipital feathers of a bird of paradise

    Get PDF
    Male Lawes's Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The barbules of the Parotia's occipital feathers, with thickness ~3 µm, contain 6–7 layers of densely packed melanin rodlets (diameter ~0.25 µm, length ~2 µm). The effectively ~0.2 µm thick melanin layers separated by ~0.2 µm thick keratin layers create a multilayer interference reflector. Reflectance measurements yielded peak wavelengths in the near-infrared at ~1.3 µm, i.e., far outside the visible wavelength range. With the Jamin-Lebedeff interference microscopy method recently developed for pigmented media, we here determined the refractive index of the intact barbules. We thus derived the wavelength dependence of the refractive index of the barbules' melanin to be 1.7–1.8 in the visible wavelength range. Implementing the anatomical and refractive index data in an optical multilayer model, we calculated the barbules' reflectance, transmittance and absorptance spectra, thereby confirming measured spectra

    The orbit rigidity matrix of a symmetric framework

    Full text link
    A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix representation for fully symmetric infinitesimal flexes, and fully symmetric stresses of symmetric frameworks. The orbit matrix is a true analog of the standard rigidity matrix for general frameworks, and its analysis gives important insights into questions about the flexibility and rigidity of classes of symmetric frameworks, in all dimensions. With this narrower focus on fully symmetric infinitesimal motions, comes the power to predict symmetry-preserving finite mechanisms - giving a simplified analysis which covers a wide range of the known mechanisms, and generalizes the classes of known mechanisms. This initial exploration of the properties of the orbit matrix also opens up a number of new questions and possible extensions of the previous results, including transfer of symmetry based results from Euclidean space to spherical, hyperbolic, and some other metrics with shared symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure

    Potential of mesenchymal- and cardiac progenitor cells for therapeutic targeting of B-cells and antibody responses in end-stage heart failure

    Get PDF
    Upon myocardial damage, the release of cardiac proteins induces a strong antibody-mediated immune response, which can lead to adverse cardiac remodeling and eventually heart failure (HF). Stem cell therapy using mesenchymal stromal cells (MSCs) or cardiomyocyte progenitor cells (CPCs) previously showed beneficial effects on cardiac function despite low engraftment in the heart. Paracrine mediators are likely of great importance, where, for example, MSC-derived extracellular vesicles (EVs) also show immunosuppressive properties in vitro. However, the limited capacity of MSCs to differentiate into cardiac cells and the sufficient scaling of MSC-derived EVs remain a challenge to clinical translation. Therefore, we investigated the immunosuppressive actions of endogenous CPCs and CPC-derived EVs on antibody production in vitro, using both healthy controls and end-stage HF patients. Both MSCs and CPCs strongly inhibit lymphocyte proliferation and antibody production in vitro. Furthermore, CPC-derived EVs significantly lowered the levels of IgG1, IgG4, and IgM, especially when administered for longer duration. In line with previous findings, plasma cells of end-stage HF patients showed high production of IgG3, which can be inhibited by MSCs in vitro. MSCs and CPCs inhibit in vitro antibody production of both healthy and end stage HF-derived immune cells. CPC-derived paracrine factors, such as EVs, show similar effects, but do not provide the complete immunosuppressive capacity of CPCs. The strongest immunosuppressive effects were observed using MSCs, suggesting that MSCs might be the best candidates for therapeutic targeting of B-cell responses in HF
    • …
    corecore