55 research outputs found

    Maximizing Reliability in WDM Networks through Lightpath Routing

    Get PDF
    We study the reliability maximization problem in WDM networks with random link failures. Reliability in these networks is defined as the probability that the logical network is connected, and it is determined by the underlying lightpath routing and the link failure probability. We show that in general the optimal lightpath routing depends on the link failure probability, and characterize the properties of lightpath routings that maximize the reliability in different failure probability regimes. In particular, we show that in the low failure probability regime, maximizing the “cross-layer” min cut of the (layered) network maximizes reliability, whereas in the high failure probability regime, minimizing the spanning tree of the network maximizes reliability. Motivated by these results, we develop lightpath routing algorithms for reliability maximization.National Science Foundation (U.S.) (Grant CNS-0830961)National Science Foundation (U.S.) (Grant CNS-1017800)United States. Defense Threat Reduction Agency (Grant HDTRA1-07-1-0004)United States. Defense Threat Reduction Agency (Grant HDTRA-09-1-0050

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    AM1* parameters for bromine and iodine

    No full text

    AM1* parameters for vanadium and chromium

    No full text

    AM1* parameters for manganese and iron

    No full text

    AM1* parameters for cobalt and nickel

    Get PDF

    Cross-layer survivability in WDM-based networks

    No full text
    In layered networks, a single failure at a lower layer may cause multiple failures in the upper layers. As a result, traditional schemes that protect against single failures may not be effective in cross-layer networks. In this paper, we introduce the problem of maximizing the connectivity of layered networks. We show that connectivity metrics in layered networks have significantly different meaning than their single-layer counterparts. Results that are fundamental to survivable single-layer network design, such as the Max-Flow Min-Cut theorem, are no longer applicable to the layered setting. We propose new metrics to measure connectivity in layered networks and analyze their properties. We use one of the metrics, Min Cross Layer Cut, as the objective for the survivable lightpath routing problem, and develop several algorithms to produce lightpath routings with high survivability. This allows the resulting cross-layer architecture to be resilient to failures.National Science Foundation (grants CNS-0626781 and CNS-0830961)United States. Defense Threat Reduction Agency (grant HDTRA1-07-1-0004
    • …
    corecore