111 research outputs found

    Impact of cropping system on mycorrhiza

    Get PDF
    The impact of cropping system on field communities of mycorrhizal fungi was studied utilising a long-term experiment on a loamy soil. Two contrasting crop rotations each with two fertilisation regimes were compared. The conventional crop rotation (barley-barley-rye-oat-potato-oat) was fertilised at either full or half the normal recommended rate. In the low-input crop rotation, one year with barley was replaced by clover, and oat was cultivated in mixture with pea. For this rotation biotite and raw phosphate was used to compensate for the K and P of the harvested yield; animal manure was used at the beginning only. Clover and straw were returned to the soil either directly or after composting. Mycorrhizal infectivity and effectiveness were studied in bioassays in the growth chamber, and the spore densities of mycorrhizal fungi as well as their species composition in the field were determined. Only the low-input system with application of compost conclusively favoured mycorrhiza, in comparison to some or all of the other systems depending on time and function. The low-input system with no compost was more favourable than the conventional systems in terms of growth effect in 1996, but in 1997, clover incorporation markedly inhibited mycorrhiza in comparison to the other systems. Inhibition of mycorrhizal functions may indicate general mismanagement and imbalance in the soil ecosystem. This stresses the need for further studies on the importance of composting easily decomposable organic matter prior to soil incorporation for management of soil quality

    Organic egg production in Finland - animal health, welfare and food safety issues

    Get PDF
    A total of 20 out of 23 commercial organic layer farms took part in the research. Data were collected through observation and by interviewing the producer, using a semi-structured interview guide. Laying hen welfare was estimated using environment-based and animal-based methods. Fresh faecal samples were collected from the floor for analysis of campylobacter and salmonella bacteria and for internal parasite identification

    Organic egg production in Finland: management of animal welfare and food safety

    Get PDF
    A total of 20 out of 23 commercial organic layer farms (in excess of 80 % of all commercial Finnish organic farms year 2003) took part in the ongoing research, which identifies risk factors and potential solutions for laying hen welfare and food safety. Data was collected during two farm visits by interviewing the producer, using a semi-structured interview guide, making environment and animal-based observations and collecting samples

    Baltic Ecological Recycling Agriculture and Society (BERAS project) - a case of Juva milk system

    Get PDF
    The aim of the study was to determine the potential, impact and prerequisites of localization and enhanced recycling in a rural food system, illustrated by the case of Juva milk. An interdisciplinary scenario based on the increase of local, organic milk to 50 % of milk comsumption was created and the sustainability was compared, on the basis of the statistics and data collected from the actors, with the present milk system

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    A modeling framework for assessing adaptation options of Finnish agriculture to climate variability and change

    Get PDF
    To enable ex ante assessment of alternative adaptation strategies for Finnish agriculture at multiple scales, MTT Agrifood Research Finland and partner institutes recently launched a project Integrated Modeling of Agrifood Systems (IMAGES).The project aims at developing and evaluating different component (economic and biophysical) models and link them in an integrated modeling framework

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    Arts-Aided Recognition of Citizens' Perceptions for Urban Open Space Management

    Get PDF
    Urban open spaces of local natural environments can promote the health and well-being of both ecosystems and humans, and the management of the urban spaces can benefit from knowledge of individuals’/citizens’ perceptions of such environments. However, such knowledge is scarce and contemporary inquiries are often limited to cognitive observations and focused on built environmental elements rather than encouraged to recognize and communicate comprehensive perceptions. This paper investigates whether arts-based methods can facilitate recognition and understanding perceptions of urban open spaces. Two arts-based methods were used to capture perceptions: drifting, which is a walking method, and theatrical images, which is a still image method and three reflective methods to recognize and communicate the perceptions. The results show related sensations and perceptions enabled by arts-based methods comparing them to a sticker map method. The main findings were perceptions, which included information about human–environment interaction, about relations to other people and about ‘sense of place’ in urban open spaces. The hitherto unidentified perceptions about urban open space were associations, metaphors and memories. The methods used offer initial practical implications for future use
    corecore