216 research outputs found

    Gap Bridging Ability in Laser GMA Hybrid Welding of Thin 22MnB5 Sheets

    Get PDF
    AbstractIn this paper, laser GMA hybrid welding of thin ultra-high-strength steel sheets (22MnB5) is investigated. A single-mode laser beam oscillating transversal to the welding direction is used in order to minimize the heat input during the process. The sheets have a thickness of 1.5mm each and are fixed in overlap configuration. The gap between the sheets was 0.8mm during experiments in order to simulate typical gap width in industrial manufacturing processes. It is shown that a stable weld seam has been achieved for this gap width in case of a welding speed of 6m/min. The gap bridging ability is caused by the interaction of the arc and the laser beam process. The laser beam process produces deeper penetration in the bottom sheet. Thus, the arc is stabilized by the laser beam

    The long noncoding RNA neuroLNC regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43

    No full text
    The cellular and the molecular mechanisms by which long noncoding RNAs (lncRNAs) may regulate presynaptic function and neuronal activity are largely unexplored. Here, we established an integrated screening strategy to discover lncRNAs implicated in neurotransmitter and synaptic vesicle release. With this approach, we identified neuroLNC, a neuron-specific nuclear lncRNA conserved from rodents to humans. NeuroLNC is tuned by synaptic activity and influences several other essential aspects of neuronal development including calcium influx, neuritogenesis, and neuronal migration in vivo. We defined the molecular interactors of neuroLNC in detail using chromatin isolation by RNA purification, RNA interactome analysis, and protein mass spectrometry. We found that the effects of neuroLNC on synaptic vesicle release require interaction with the RNA-binding protein TDP-43 (TAR DNA binding protein-43) and the selective stabilization of mRNAs encoding for presynaptic proteins. These results provide the first proof of an lncRNA that orchestrates neuronal excitability by influencing presynaptic function

    Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation

    Get PDF
    Additional file 1. Table S1, Figure S1–Figure S3: Mass spectrometry data and plots of purified foam extracts of Rouxiella sp. DSM 100043. Figure S4: Full NMR spectra of Rouxiella sp. DMS 100043 glycolipids present in fractions 64-65

    Surfactants tailored by the class Actinobacteria

    Get PDF
    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application

    Surfactants tailored by the class Actinobacteria

    Get PDF
    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application

    Bound States and Threshold Resonances in Quantum Wires with Circular Bends

    Full text link
    We study the solutions to the wave equation in a two-dimensional tube of unit width comprised of two straight regions connected by a region of constant curvature. We introduce a numerical method which permits high accuracy at high curvature. We determine the bound state energies as well as the transmission and reflection matrices, T{\cal T} and R{\cal R} and focus on the nature of the resonances which occur in the vicinity of channel thresholds. We explore the dependence of these solutions on the curvature of the tube and angle of the bend and discuss several limiting cases where our numerical results confirm analytic predictions.Comment: 24 pages, revtex file, one style file and 17 PostScript figures include

    Stabilization and humanization of a single-chain Fv antibody fragment specific for human lymphocyte antigen CD19 by designed point mutations and CDR-grafting onto a human framework

    Get PDF
    A single-chain Fv (scFv) fragment derived from the murine antibody 4G7, specific for human lymphocyte CD19, was engineered for stability and expression in Escherichia coli in view of future use as a therapeutic protein. We compared two orthogonal knowledge-based procedures. In one approach, we designed a mutant with 14 single amino-acid substitutions predicted to correct destabilizing residues in the 4G7-wt sequence to create 4G7-mut. In the second variant, the murine CDRs were grafted to the human acceptor framework huVκ3-huVH3, with 11 additional point mutations introduced to obtain a better match between CDR graft and acceptor framework, to arrive at 4G7-graft. Compared to 4G7-wt, 4G7-mut showed greater thermodynamic stability in guanidinium chloride-induced equilibrium denaturation experiments and somewhat greater stability in human serum. The loop graft maintained the comparatively high stability of the murine loop donor, but did not improve it further. Our analysis indicates that this is due to subtle strain introduced between CDRs and framework, mitigating the otherwise highly favorable properties of the human acceptor framework. This slight strain in the loop graft is also reflected in the binding affinities for CD19 on leukemic cells of 8.4 nM for 4G7-wt, 16.4 nM for 4G7-mut and 30.0 nM for 4G7-graft. This comparison of knowledge-based mutation and loop-grafting-based approaches will be important, when moving molecules forward to therapeutic application

    Notions and subnotions in information structure

    Get PDF
    Three dimensions can be distinguished in a cross-linguistic account of information structure. First, there is the definition of the focus constituent, the part of the linguistic expression which is subject to some focus meaning. Second and third, there are the focus meanings and the array of structural devices that encode them. In a given language, the expression of focus is facilitated as well as constrained by the grammar within which the focus devices operate. The prevalence of focus ambiguity, the structural inability to make focus distinctions, will thus vary across languages, and within a language, across focus meanings

    Magnetic trapping of ultracold neutrons

    Full text link
    Three-dimensional magnetic confinement of neutrons is reported. Neutrons are loaded into an Ioffe-type superconducting magnetic trap through inelastic scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low energy and in the appropriate spin state are confined by the magnetic field until they decay. The electron resulting from neutron decay produces scintillations in the liquid helium bath that results in a pulse of extreme ultraviolet light. This light is frequency downconverted to the visible and detected. Results are presented in which 500 +/- 155 neutrons are magnetically trapped in each loading cycle, consistent with theoretical predictions. The lifetime of the observed signal, 660 s +290/-170 s, is consistent with the neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review

    CD20 and CD19 targeted vectors induce minimal activation of resting B lymphocytes

    Get PDF
    B lymphocytes are an important cell population of the immune system. However, until recently it was not possible to transduce resting B lymphocytes with retro- or lentiviral vectors, making them unsusceptible for genetic manipulations by these vectors. Lately, we demonstrated that lentiviral vectors pseudotyped with modified measles virus (MV) glycoproteins hemagglutinin, responsible for receptor recognition, and fusion protein were able to overcome this transduction block. They use either the natural MV receptors, CD46 and signaling lymphocyte activation molecule (SLAM), for cell entry (MV-LV) or the vector particles were further modified to selectively enter via the CD20 molecule, which is exclusively expressed on B lymphocytes (CD20-LV). It has been shown previously that transduction by MV-LV does not induce B lymphocyte activation. However, if this is also true for CD20-LV is still unknown. Here, we generated a vector specific for another B lymphocyte marker, CD19, and compared its ability to transduce resting B lymphocytes with CD20-LV. The vector (CD19ds-LV) was able to stably transduce unstimulated B lymphocytes, albeit with a reduced efficiency of about 10% compared to CD20-LV, which transduced about 30% of the cells. Since CD20 as well as CD19 are closely linked to the B lymphocyte activation pathway, we investigated if engagement of CD20 or CD19 molecules by the vector particles induces activating stimuli in resting B lymphocytes. Although, activation of B lymphocytes often involves calcium influx, we did not detect elevated calcium levels. However, the activation marker CD71 was substantially up-regulated upon CD20-LV transduction and most importantly, B lymphocytes transduced with CD20-LV or CD19ds-LV entered the G1b phase of cell cycle, whereas untransduced or MV-LV transduced B lymphocytes remained in G0. Hence, CD20 and CD19 targeting vectors induce activating stimuli in resting B lymphocytes, which most likely renders them susceptible for lentiviral vector transduction
    corecore