330 research outputs found

    ΛN\Lambda N correlations from the stopped KK^- reaction on 4{}^4He

    Full text link
    We have investigated correlations of coincident ΛN\Lambda N pairs from the stopped KK^- reaction on 4{}^4He, and clearly observed Λp\Lambda p and Λn\Lambda n branches of the two-nucleon absorption process in the ΛN\Lambda N invariant mass spectra. In addition, non-mesonic reaction channels, which indicate possible exotic signals for the formation of strange multibaryon states, have been identified.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    ANALYSIS OF THE EFECTS OF AN AC ELECTROMAGNETIC FIELD EXPOSURE IN MICROCIRCULATION OF HUMANS BY USING A 2D LASER SPECKLE FLOWMETRY

    Get PDF
    To date, there are only a few reports evaluating non-thermal alternating current electromagnetic exposure for medical therapeutic applications. Here, we analyzed the acute effects of hand and forearm exposure to a 50 Hz electromagnetic field (EMF; peak magnetic flux density Bmax 180 mT, Brms 127 mT, 15-min duration of exposure) on cutaneous microcirculation in 11 healthy human subjects (10 males and 1 female, age betwen 22-57 years). The blood flow volume values in the back of the hand were monitored and analyzed using a 2D laser speckle flowmetry. Regional blood flow volume values in sham control exposure were significantly reduced from baseline values during resting conditions. In contrast, the EMF exposure did not significantly decreased the blood flow volume from the baseline values during and after the EMF exposure period. There were significant differences between the EMF and sham exposure groups. Therefore, the EMF exposure significantly prevented the reduction of blood flow volume. Thus, the EMF could improve blood flow volume in cutaneous tissue under ischemic conditions. These findings imply that the physiological role of an EMF-enhanced blood circulation might help eliminate the metabolic waste products including endogenous pain producing substances inducing muscle hardness and pain

    Line shape of the muH(3p - 1s) hyperfine transitions

    Get PDF
    The (3p - 1s) X-ray transition to the muonic hydrogen ground state was measured with a high resolution crystal spectrometer. A Doppler effect broadening of the X-ray line was established which could be attributed to different Coulomb de-excitation steps preceding the measured transition. The assumption of a statistical population of the hyperfine levels of the muonic hydrogen ground state was directly confirmed by the experiment and measured values for the hyperfine splitting can be reported. The results allow a decisive test of advanced cascade model calculations and establish a method to extract fundamental strong-interaction parameters from pionic hydrogen experiments.Comment: Submitted to Physical Review Letter

    Line shape analysis of the Kβ\beta transition in muonic hydrogen

    Full text link
    The Kβ\beta transition in muonic hydrogen was measured with a high-resolution crystal spectrometer. The spectrum is shown to be sensitive to the ground-state hyperfine splitting, the corresponding triplet-to-singlet ratio, and the kinetic energy distribution in the 3p3p state. The hyperfine splitting and triplet-to-singlet ratio are found to be consistent with the values expected from theoretical and experimental investigations and, therefore, were fixed accordingly in order to reduce the uncertainties in the further reconstruction of the kinetic energy distribution. The presence of high-energetic components was established and quantified in both a phenomenological, i.e. cascade-model-free fit, and in a direct deconvolution of the Doppler broadening based on the Bayesian approach.Comment: 22 pages, 21 figure

    The VIP Experiment

    Get PDF
    The Pauli Exclusion Principle (PEP) is a basic principle of Quantum Mechanics, and its validity has never been seriously challenged. However, given its importance, it is very important to check it as thoroughly as possible. Here we describe the VIP (Violation of PEP) experiment, an improved version of the Ramberg and Snow experiment (Ramberg and Snow, Phys. Lett. B238 (1990) 438); VIP shall be performed at the Gran Sasso underground laboratories, and aims to test the Pauli Exclusion Principle for electrons with unprecedented accuracy, down to β221030\frac{\beta^2}{2} \sim 10^{-30}Comment: 7 pages, 5 figures, PDF only, presented by Edoardo Milotti to the conference "Quantum Theory: reconsideration of foundations-3", Vaxjo (Sweden), June, 6-11 200

    A New Measurement of Kaonic Hydrogen X rays

    Full text link
    The KˉN\bar{K}N system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the KK-series x rays of kaonic hydrogen atoms at the DAΦ\PhiNE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the 1s1s atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be ϵ1s=283±36±6(syst)\epsilon_{1s} = -283 \pm 36 \pm 6 {(syst)} eV and Γ1s=541±89(stat)±22(syst)\Gamma_{1s} = 541 \pm 89 {(stat)} \pm 22 {(syst)} eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy KˉN\bar{K}N interaction.Comment: 5 figures, submitted to Physics Letters

    High sensitivity tests of the Pauli Exclusion Principle with VIP2

    Get PDF
    The Pauli Exclusion Principle is one of the most fundamental rules of nature and represents a pillar of modern physics. According to many observations the Pauli Exclusion Principle must be extremely well fulfilled. Nevertheless, numerous experimental investigations were performed to search for a small violation of this principle. The VIP experiment at the Gran Sasso underground laboratory searched for Pauli-forbidden X-ray transitions in copper atoms using the Ramberg-Snow method and obtained the best limit so far. The follow-up experiment VIP2 is designed to reach even higher sensitivity. It aims to improve the limit by VIP by orders of magnitude. The experimental method, comparison of different PEP tests based on different assumptions and the developments for VIP2 are presented.Comment: 6 pages, 3 figures, Proceedings DISCRETE2014 Conferenc

    Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    Full text link
    In the exotic atoms where one atomic 1s1s electron is replaced by a KK^{-}, the strong interaction between the KK^{-} and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the 1s1s state of KpK^{-}p and the 2p2p state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.Comment: 4 pages, 1 figure, proceedings for oral presentation at the ICNFP2015 conference, Kolymbari, Cret
    corecore