4,832 research outputs found

    Hole doped Hubbard ladders

    Full text link
    The formation of stripes in six-leg Hubbard ladders with cylindrical boundary conditions is investigated for two different hole dopings, where the amplitude of the hole density modulation is determined in the limits of vanishing DMRG truncation errors and infinitely long ladders. The results give strong evidence that stripes exist in the ground state of these systems for strong but not for weak Hubbard couplings. The doping dependence of these findings is analysed.Comment: 2 pages, 2 figures, submitted to SCES0

    Dynamic interpretation of geoid anomalies

    Get PDF
    The NASA Geodynamics program has as two of its missions precise determination of spatial variations in earth's geopotential (or geoid) and highly accurate monitoring of polar motion, including changes in the length of day (LOD). For the past several years, data sets provided by NASA, along with data and models from other areas of geophysic were used to place fundamental contraints on the large scale dynamics of earth and her sister planet Venus. The main approach was using fluid mechanical models of mantle flow to predict the long-wavelength variations in the geoid

    Mantle convection and the state of the Earth's interior

    Get PDF
    During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed

    Intraplate deformation, stress in the lithosphere and the driving mechanism for plate motions

    Get PDF
    During this period work was carried out on three fronts relevant to the understanding of intraplate deformation, stress in the lithosphere, and the driving mechanisms for plate motions: (1) observational constraints, using GPS geodesy on the deformation in the region of the boundry between the Pacific and North American plates in central and southern California; (2) numerical modeling of the effects of temperature dependent lithospheric viscosity on the stress and strain history of extensional regimes; and (3) improvement of estimates of mantle viscosity variation, the long-wave-length density variations in the mantle, and the topography of the core-mantel boundary from modeling of geoid anomalies, nutation, and changes in length of day. These projects are described in more detail, followed by a discussion of meetings attended and a list of abstracts and papers submitted and/or published

    Driving forces: Slab subduction and mantle convection

    Get PDF
    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection

    Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    Get PDF
    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon

    Interseismic strain accumulation: Spin-up, cycle invariance, and irregular rupture sequences

    Get PDF
    Using models of infinite length strike-slip faults in an elastic layer above linear viscoelastic regions, we investigate interseismic deformation. In the models we investigate, interseismic strain accumulation on mature faults is the result of the cumulative effects of all previous ruptures and is independent of the fault loading conditions. The time for a fault to spin-up to a mature state depends on the rheologies and the fault loading conditions. After the model has spun-up, the temporal variation of shear stresses is determined by the fault slip rate and model rheologies. The change in stress during spin-up depends on the slip rate, rheologies, and fault loading conditions but is independent of the magnitude of the initial stress. Over enough cycles such that the cumulative deformation is block-like, the average mature interseismic velocities are equal to the interseismic velocities of an elastic model with the same geometry and distribution of shear moduli. In a model that has spun-up with the fault rupturing periodically, the cumulative deformation is block-like at the end of each seismic cycle, and the interseismic deformation is cycle-invariant (i.e., the same in all cycles). When the fault ruptures nonperiodically, the fault spins up to a mature state that is the same as if the fault had ruptured periodically with the mean slip rate. When the fault slip rate within each cycle varies, the interseismic deformation evolves toward the cycle-invariant deformation determined by the most recent fault slip rate. Around a fault whose slip rate has been faster (slower) than average, interseismic velocities are larger (smaller) than the cycle-invariant velocities and increase (decrease) from cycle to cycle

    The effects of rheological layering on post-seismic deformation

    Get PDF
    We examine the effects of rheological layering on post-seismic deformation using models of an elastic layer over a viscoelastic layer and a viscoelastic half-space. We extend a general linear viscoelastic theory we have previously proposed to models with two layers over a half-space, although we only consider univiscous Maxwell and biviscous Burgers rheologies. In layered viscoelastic models, there are multiple mechanical timescales of post-seismic deformation; however, not all of these timescales arise as distinct phases of post-seismic relaxation observed at the surface. The surface displacements in layered models with only univiscous, Maxwell viscoelastic rheologies always exhibit one exponential-like phase of relaxation. Layered models containing biviscous rheologies may produce multiple phases of relaxation, where the distinctness of the phases depends on the geometry and the contrast in strengths between the layers. Post-seismic displacements in models with biviscous rheologies can often be described by logarithmic functions

    Fundamental studies in geodynamics

    Get PDF
    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix
    • …
    corecore