332 research outputs found
Mutations of the ret protooncogene in German multiple endocrine neoplasia families: Relation between genotype and phenotype.
It has been suggested that not only the position but also the nature of the mutations of the ret protooncogene strongly correlate with the clinical manifestation of the multiple endocrine neoplasm type 2 (MEN 2) syndrome. In particular, individuals with a Cys634-Arg substitution should have a greater risk of developing parathyroid disease. We, therefore, analyzed 94 unrelated families from Germany with inherited medullary thyroid carcinoma (MTC) for mutation of the ret protooncogene. In all but 1 of 59 families with MEN 2A, germline mutations in the extracellular domain of the ret protein were found. Some 81% of the MEN 2A mutations affected codon 634. Phenotype-genotype correlations suggested that the prevalence of pheochromocytoma and hyperparathyroidism is significantly higher in families with codon 634 mutations, but there was no correlation with the nature of the mutation. In all but 1 of 27 familial MTC (FMTC) families, mutations were detected in 1 of 4 cysteines in the extracellular domain of the ret protooncogene. Half of the FMTC mutations affected codon 634. Mutations outside of codon 634 occurred more often in FMTC families than in MEN 2A families. In all but 1 of 8 MEN 2B patients, de novo mutations in codon 918 were found. These data confirm the preferential localization of MEN 2-associated mutations and the correlation between disease phenotype and the position of the ret mutation, but there was no correlation between the occurrence of hyperparathyroidism or pheochromocytoma and the nature of the mutation
Two different epigenetic information channels in wild three-spined sticklebacks are involved in salinity adaptation
Epigenetic inheritance has been proposed to contribute to adaptation and acclimation via two information channels: (i) inducible epigenetic marks that enable transgenerational plasticity and (ii) noninducible epigenetic marks resulting from random epimutations shaped by selection. We studied both postulated channels by sequencing methylomes and genomes of Baltic three-spined sticklebacks ( Gasterosteus aculeatus ) along a salinity cline. Wild populations differing in salinity tolerance revealed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes. A two-generation experiment demonstrated that 62% of these pop-DMS were noninducible by salinity manipulation, suggesting that they are the result of either direct selection or associated genomic divergence at cis- or trans-regulatory sites. Two-thirds of the remaining inducible pop-DMS increased in similarity to patterns detected in wild populations from corresponding salinities. The level of similarity accentuated over consecutive generations, indicating a mechanism of transgenerational plasticity. While we can attribute natural DNA methylation patterns to the two information channels, their interplay with genomic variation in salinity adaptation is still unresolved
Autonomous clustering using rough set theory
This paper proposes a clustering technique that minimises the need for subjective
human intervention and is based on elements of rough set theory. The proposed algorithm is
unified in its approach to clustering and makes use of both local and global data properties to
obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and
results from three data sets of single and mixed attribute types are used to illustrate the
technique and establish its efficiency
The PANDA GEM-based TPC Prototype
We report on the development of a GEM-based TPC prototype for the PANDA
experiment. The design and requirements of this device will be illustrated,
with particular emphasis on the properties of the recently tested GEM-detector,
the characterization of the read-out electronics and the development of the
tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture
- …