133 research outputs found

    Void Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis-Sinclair Potential

    Full text link
    The process of fracture in ductile metals involves the nucleation, growth, and linking of voids. This process takes place both at the low rates involved in typical engineering applications and at the high rates associated with dynamic fracture processes such as spallation. Here we study the growth of a void in a single crystal at high rates using molecular dynamics (MD) based on Finnis-Sinclair interatomic potentials for the body-centred cubic (bcc) metals V, Nb, Mo, Ta, and W. The use of the Finnis-Sinclair potential enables the study of plasticity associated with void growth at the atomic level at room temperature and strain rates from 10^9/s down to 10^6/s and systems as large as 128 million atoms. The atomistic systems are observed to undergo a transition from twinning at the higher end of this range to dislocation flow at the lower end. We analyze the simulations for the specific mechanisms of plasticity associated with void growth as dislocation loops are punched out to accommodate the growing void. We also analyse the process of nucleation and growth of voids in simulations of nanocrystalline Ta expanding at different strain rates. We comment on differences in the plasticity associated with void growth in the bcc metals compared to earlier studies in face-centred cubic (fcc) metals.Comment: 24 pages, 12 figure

    Time-dependent energy absorption changes during ultrafast lattice deformation

    Full text link
    The ultrafast time-dependence of the energy absorption of covalent solids upon excitation with femtosecond laser pulses is theoretically analyzed. We use a microscopic theory to describe laser induced structural changes and their influence on the electronic properties. We show that from the time evolution of the energy absorbed by the system important information on the electronic and atomic structure during ultrafast phase transitions can be gained. Our results reflect how structural changes affect the capability of the system to absorb external energy.Comment: 7 pages RevTeX, 8 ps figures, submitted to Journal of Appl. Physic

    High pressure diamond-like liquid carbon

    Get PDF
    We report density-functional based molecular dynamics simulations, that show that, with increasing pressure, liquid carbon undergoes a gradual transformation from a liquid with local three-fold coordination to a 'diamond-like' liquid. We demonstrate that this unusual structural change is well reproduced by an empirical bond order potential with isotropic long range interactions, supplemented by torsional terms. In contrast, state-of-the-art short-range bond-order potentials do not reproduce this diamond structure. This suggests that a correct description of long-range interactions is crucial for a unified description of the solid and liquid phases of carbon.Comment: 4 pages, 5 figure

    Atoms in the Surf: Molecular Dynamics Simulation of the Kelvin-Helmholtz Instability using 9 Billion Atoms

    Full text link
    We present a fluid dynamics video showing the results of a 9-billion atom molecular dynamics simulation of complex fluid flow in molten copper and aluminum. Starting with an atomically flat interface, a shear is imposed along the copper-aluminum interface and random atomic fluctuations seed the formation of vortices. These vortices grow due to the Kelvin-Helmholtz instability. The resulting vortical structures are beautifully intricate, decorated with secondary instabilities and complex mixing phenomena. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.Comment: Description of video submitted to APS DFD Gallery of Fluid Motion 200

    Nature of phase transition(s) in striped phase of triangular-lattice Ising antiferromagnet

    Full text link
    Different scenarios of the fluctuation-induced disordering of the striped phase which is formed at low temperatures in the triangular-lattice Ising model with the antiferromagnetic interaction of nearest and next-to-nearest neighbors are analyzed and compared. The dominant mechanism of the disordering is related to the formation of a network of domain walls, which is characterized by an extensive number of zero modes and has to appear via the first-order phase transition. In principle, this first-order transition can be preceded by a continuous one, related to the spontaneous formation of double domain walls and a partial restoration of the broken symmetry, but the realization of such a scenario requires the fulfillment of rather special relations between the coupling constants.Comment: 10 pages, 7 figures, ReVTeX

    Structural transitions and nonmonotonic relaxation processes in liquid metals

    Full text link
    Structural transitions in melts as well as their dynamics are considered. It is supposed that liquid represents the solution of relatively stable solid-like locally favored structures (LFS) in the surrounding of disordered normal-liquid structures. Within the framework of this approach the step changes of liquid Co viscosity are considered as liquid-liquid transitions. It is supposed that this sort of transitions represents the cooperative medium-range bond ordering, and corresponds to the transition of the "Newtonian fluid" to the "structured fluid". It is shown that relaxation processes with oscillating-like time behavior (ω∌10−2\omega \sim 10^{-2}~s−1s^{-1}) of viscosity are possibly close to this point

    Theory for the ultrafast ablation of graphite films

    Full text link
    The physical mechanisms for damage formation in graphite films induced by femtosecond laser pulses are analyzed using a microscopic electronic theory. We describe the nonequilibrium dynamics of electrons and lattice by performing molecular dynamics simulations on time-dependent potential energy surfaces. We show that graphite has the unique property of exhibiting two distinct laser induced structural instabilities. For high absorbed energies (> 3.3 eV/atom) we find nonequilibrium melting followed by fast evaporation. For low intensities above the damage threshold (> 2.0 eV/atom) ablation occurs via removal of intact graphite sheets.Comment: 5 pages RevTeX, 3 PostScript figures, submitted to Phys. Re

    Liquid-liquid equilibrium for monodisperse spherical particles

    Full text link
    A system of identical particles interacting through an isotropic potential that allows for two preferred interparticle distances is numerically studied. When the parameters of the interaction potential are adequately chosen, the system exhibits coexistence between two different liquid phases (in addition to the usual liquid-gas coexistence). It is shown that this coexistence can occur at equilibrium, namely, in the region where the liquid is thermodynamically stable.Comment: 6 pages, 8 figures. Published versio

    A Simple Model of Liquid-liquid Phase Transitions

    Full text link
    In recent years, a second fluid-fluid phase transition has been reported in several materials at pressures far above the usual liquid-gas phase transition. In this paper, we introduce a new model of this behavior based on the Lennard-Jones interaction with a modification to mimic the different kinds of short-range orientational order in complex materials. We have done Monte Carlo studies of this model that clearly demonstrate the existence of a second first-order fluid-fluid phase transition between high- and low-density liquid phases
    • 

    corecore