3,520 research outputs found
Measurement of neutron spectra in liquid hydrogen final report
Neutron spectrum measurement in liquid hydrogen and wate
On the measurement of drop size and liquid water content in fogs and clouds
A short critical review of possible methods for the measurement of the size of fog particles is
presented. It is concluded that the only suitable method of obtaining the distribution of drop sizes
present in a given fog consists in the microscopic measurement of large numbers of drops which
have been collected on a properly surfaced slide. A method for surfacing microscope slides with a
thin, uniform layer of petroleum grease is described. The important problem of obtaining a representative
sample of drops on a slide is next considered. Experimental results indicate that slides
no larger than 5 mm square will collect satisfactory samples if exposed facing the wind. Larger
slides are found to discriminate against the smaller drops. Special fog microscopes which have been
constructed for observing droplet samples are described, and typical results obtained in natural
fogs are presented. Although forty sets of data have been procured in sixteen different fogs, it has
not been possible to correlate the drop size data with any of the accompanying meteorological
conditions. There is no evidence of mass grouping, such as Köhler observed in clouds; however,
definite conclusions cannot be drawn from such a relatively small amount of data. The usefulness of fog water data is indicated and possible methods of procuring them are
reviewed. An investigation of the sampling problem encountered in the operation of most fog
measuring instruments is described. The method of avoiding sampling diffculties in a new fog
water instrument is explained and the constructional features and operation of the apparatus are
discussed
On the local dissipation of natural fog
It is submitted that the hazards of landing aircraft in fog could be greatly reduced by providing
relatively small clearings into which approaching planes could be safely guided by radio or
other navigational aids which are now available. The same general method might also be used to
facilitate the entrance of ships into fog-bound harbors or docks.
In the first section of this paper the properties of fog which are of importance in the discussion
of methods of fog dissipation are summarized on the basis of measurements made at Round Hill.
The minimum dimensions of a cleared space of useful size are taken as 500 to 1000 meters long,
30 to 50 meters wide and 10 to 20 meters high. From extensive investigations at Round Hill it is
known that in order to maintain a clearing of this size under typical wind conditions, fog must be
cleared at a minimum rate of about 2000 cubic meters per second. This figure is used for all subsequent
computations.
It is pointed out that the known methods of fog dissipation can be divided into two general
classifications: (1) those in which the fog particles, are physically removed from the air, and
(2) those in which the particles are evaporated in the air. Numerous specific methods are then
described and critically examined with respect to their ability to provide cleared air at a rate
of 2000 cubic meters per second in a reasonably practical manner. The more important methods
considered involve the use of intense sound fields, charged or uncharged falling particles, electrical
precipitation, mechanical precipitation, evaporation by heating and evaporation induced by the
condensation of atmospheric water vapor on hygroscopic particles. It is concluded that the evaporation
methods as a class are superior to the physical removal methods because they lower the
relative humidity of the cleared air and thereby greatly reduce the limiting effects of atmospheric
turbulence which act to "fill in" the cleared space. The method involving the condensation of
water vapor by means of calcium chloride is chosen as being probably the most practical of the
fog dissipation methods considered.
The second section of the paper presents a detailed examination of one application of the calcium
chloride method of fog dissipation. In this method drops of a saturated solution of calcium
chloride are released above the volume of fog which is to be cleared. These hygroscopic drops,
which are large enough to fall fairly rapidly, condense a suffcient quantity of water vapor from
the air through which they descend to effect the evaporation of the fog particles.
The investigation of this method of fog dissipation is divided into three parts. The first part
deals with the determination of the relative humidity required to cause the evaporation of the
fog drops as a function of the time of evaporation and the size of the fog drops. The second part
is concerned with the rate of condensation of water vapor on drops of calcium chloride solution
as a function of the drop size and concentration. In the third part the criteria for the selection of
the optimum size of the solution drops are presented and the development of spray nozzles capable
of forming drops of approximately the desired size is described briefly. Finally, the quantity
of calcium chloride solution required for the dissipation of fog under typical conditions is computed.
It is found that, with the best available spray nozzles, fog can be dissipated at a rate of
2000 cubic meters per second (suffcient to maintain a cleared space of useful size under typical
conditions) by spraying from 4 to 5 liters of saturated solution per second. It is concluded that
the method is practicable on the scale proposed.
The third section of the paper is an account of the design and successful operation of a fullsized
experimental fog dissipator operating according to the method described in the second
section. The major considerations which influenced the determination of the size and spraying
capacity of the apparatus are summarized and the essential features of the actual installation
are described. The test procedure is outlined and the average results of eight successful tests conducted
during a period of two and one-half years are indicated. The tests were made at air temperatures
ranging from 4° to 20°C and at wind velocities up to 7 meters per second. The clearings formed were usually from 500 to 700 meters long, 30 to 50 meters wide and 15 to 20 meters high.
After the installation of an improved type of spray nozzle clearings of the same size were maintained
by spraying only 5 liters of saturated calcium chloride solution per second. The data obtained
in two typical fog dissipation tests are presented in detaiL. It is found that the experimental
results are in excellent agreement with the computations presented in the second section of the
paper. It is concluded that the local dissipation of natural fog by means of sprayed calcium
chloride is entirely feasible. Certain practical disadvantages of the experimental installation are
discussed and a new type of apparatus which has recently been constructed to overcome some of
these limitations is briefly described. Methods for practically eliminating the corrosive action of
the calcium chloride solution are also noted.
The fourth and final section of the paper describes a new type of apparatus in which the general
method of fog dissipation by means of hygroscopic particles is applied in a different manner.
By substituting finely-divided calcium chloride powder for the relatively coarse spray it is possible
to confine the hygroscopic material entirely within the dissipating apparatus which is constructed
in the form of a short tunnel. The spent hygroscopic material is removed from suspension by
means of a special eliminator and only cleared and dehumidified air is discharged. A powerful
engine-driven blower facilitates proper distribution of the cleared air under all wind conditions.
The advantages of this type of apparatus in comparison with that described in the third section
are: the absence of an external spray of calcium chloride, its independence of wind velocity over
a considerable range, and its smaller size which reduces the obstruction hazard and permits it to
be made mobile.
From the results of tests with the spray-type fog dissipator it was known that the new apparatus
should be capable of reducing the relative humidity to 90% in 2000 cubic meters of fog per
second in order to maintain a clearing of useful dimensions under typical conditions. A unit of
excessive size would be required to handle this quantity of air. However, it is possible to remove a
suffcient quantity of water vapor from a fraction of the air so that the required relative humidity
of 90% can be produced in the total volume of air by proper admixture of the dried portion.
A commercial calcium chloride powder was selected as the most suitable hygroscopic material
and computations were made to determine the quantity of powder required and the time necessary
for it to act. In order to check these computations, which involved several simplifying assumptions,
and also to develop the essential features of the proposed apparatus, a working model
was set up outdoors. Results from the tests with the model are in fairly good agreement with the
computations. It was determined that the lowest practical exit relative humidity is about 50%.
Since a relative humidity of 90% suffces for the dissipation of fog only one-fifth of the total volume
of air to be cleared need be handled by the apparatus on this basis.
The eliminator which mechanically removes the spent calcium chloride particles from the dehumidified
air is an important part of the apparatus. After numerous tests on typical eliminators
it was found necessary to develop a new type which would be effective at the required high flow
velocities.
The important problem of properly distributing the dried air was studied with the aid of a
large mobile blower unit. It was concluded that, although it would be preferable to employ a
number of appropriately spaced discharge ports when-possible, a satisfactory distribution could be
effected from a single large opening by using a discharge velocity of from 20 to 30 meters per
second.
Preliminary designs for two units of the new type are presented to show that the size, weight,
blower power requirements and quantity of calcium chloride required for apparatus capable of
maintaining cleared spaces of useful size are not unreasonable
Exact Nonperturbative Unitary Amplitudes for 1->N Transitions
I present an extension to arbitrary N of a previously proposed field
theoretic model, in which unitary amplitudes for processes were
obtained. The Born amplitude in this extension has the behavior
expected in a bosonic field theory. Unitarity
is violated when , or when Numerical
solutions of the coupled Schr\"odinger equations shows that for weak coupling
and a large range of N>\ncrit, the exact unitary amplitude is reasonably fit
by a factorized expression |A(1->N)| \sim (0.73 /N) \cdot \exp{(-0.025/\g2)}.
The very small size of the coefficient 1/\g2 , indicative of a very weak
exponential suppression, is not in accord with standard discussions based on
saddle point analysis, which give a coefficient The weak dependence
on could have experimental implications in theories where the exponential
suppression is weak (as in this model). Non-perturbative contributions to
few-point correlation functions in this theory would arise at order $K\ \simeq\
\left((0.05/\g2)+ 2\ ln{N}\right)/ \ ln{(1/\g2)}\g2.$Comment: 11 pages, 3 figures (not included
Hall Effect in the mixed state of moderately clean superconductors
The Hall conductivity in the mixed state of a clean () type-II
s-wave superconductor is determined from a microscopic calculation within a
quasiclassical approximation. We find that below the superconducting transition
the contribution to the transverse conductivity due to dynamical fluctuations
of the order parameter is compensated by the modification of the quasiparticle
contribution. In this regime the nonlinear behaviour of the Hall angle is
governed by the change in the effective quasiparticle scattering rate due to
the reduction in the density of states at the Fermi level. The connection with
experimental results is discussed
Symmetric Skyrmions
We present candidates for the global minimum energy solitons of charge one to
nine in the Skyrme model, generated using sophisticated numerical algorithms.
Assuming the Skyrme model accurately represents the low energy limit of QCD,
these configurations correspond to the classical nuclear ground states of the
light elements. The solitons found are particularly symmetric, for example, the
charge seven skyrmion has icosahedral symmetry, and the shapes are shown to fit
a remarkable sequence defined by a geometric energy minimization (GEM) rule. We
also calculate the energies and sizes to within at least a few percent
accuracy. These calculations provide the basis for a future investigation of
the low energy vibrational modes of skyrmions and hence the possibility of
testing the Skyrme model against experiment.Comment: latex, 9 pages, 1 figure (fig1.gif
Chapter An Initial Selection of Manuscripts for the Editio Critica Maior of the Pauline Epistles
Thirty-three internationally renowned scholars of the text and transmission of the New Testament offer original contributions on ancient manuscripts and digital editing in honour of Klaus Wachtel, a pioneer in the use of computers to edit the New Testament. The individual chapters in English, German and French represent new research on a wide range of important manuscripts, early translations and editorial approaches
Quasiparticle thermal conductivity in the vortex state of high-T cuprates
We present the results of a microscopic calculation of the longitudinal
thermal conductivity, , of a d-wave superconductor in the mixed state.
Our results show an increase in the thermal conductivity with the applied field
at low temperatures, and a decrease followed by a nearly field independent
at higher temperatures, in qualitative agreement with the
experimental results. We discuss the relationship between the slope of the
superconducting gap and the plateau in .Comment: 4 pages, 3 figures, very minor changes to text, published versio
Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics
The atmospheric greenhouse effect, an idea that many authors trace back to
the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896),
and which is still supported in global climatology, essentially describes a
fictitious mechanism, in which a planetary atmosphere acts as a heat pump
driven by an environment that is radiatively interacting with but radiatively
equilibrated to the atmospheric system. According to the second law of
thermodynamics such a planetary machine can never exist. Nevertheless, in
almost all texts of global climatology and in a widespread secondary literature
it is taken for granted that such mechanism is real and stands on a firm
scientific foundation. In this paper the popular conjecture is analyzed and the
underlying physical principles are clarified. By showing that (a) there are no
common physical laws between the warming phenomenon in glass houses and the
fictitious atmospheric greenhouse effects, (b) there are no calculations to
determine an average surface temperature of a planet, (c) the frequently
mentioned difference of 33 degrees Celsius is a meaningless number calculated
wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the
assumption of a radiative balance is unphysical, (f) thermal conductivity and
friction must not be set to zero, the atmospheric greenhouse conjecture is
falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected
TWINLATIN: Twinning European and Latin-American river basins for research enabling sustainable water resources management. Combined Report D3.1 Hydrological modelling report and D3.2 Evaluation report
Water use has almost tripled over the past 50 years and in some regions the water demand already
exceeds supply (Vorosmarty et al., 2000). The world is facing a “global water crisis”; in many
countries, current levels of water use are unsustainable, with systems vulnerable to collapse from even
small changes in water availability. The need for a scientifically-based assessment of the potential
impacts on water resources of future changes, as a basis for society to adapt to such changes, is strong
for most parts of the world. Although the focus of such assessments has tended to be climate change,
socio-economic changes can have as significant an impact on water availability across the four main
use sectors i.e. domestic, agricultural, industrial (including energy) and environmental. Withdrawal
and consumption of water is expected to continue to grow substantially over the next 20-50 years
(Cosgrove & Rijsberman, 2002), and consequent changes in availability may drastically affect society
and economies.
One of the most needed improvements in Latin American river basin management is a higher level of
detail in hydrological modelling and erosion risk assessment, as a basis for identification and analysis
of mitigation actions, as well as for analysis of global change scenarios. Flow measurements are too
costly to be realised at more than a few locations, which means that modelled data are required for the
rest of the basin. Hence, TWINLATIN Work Package 3 “Hydrological modelling and extremes” was
formulated to provide methods and tools to be used by other WPs, in particular WP6 on “Pollution
pressure and impact analysis” and WP8 on “Change effects and vulnerability assessment”. With an
emphasis on high and low flows and their impacts, WP3 was originally called “Hydrological
modelling, flooding, erosion, water scarcity and water abstraction”. However, at the TWINLATIN
kick-off meeting it was agreed that some of these issues resided more appropriately in WP6 and WP8,
and so WP3 was renamed to focus on hydrological modelling and hydrological extremes.
The specific objectives of WP3 as set out in the Description of Work are
- …