4,918 research outputs found
Cosmological rotating black holes in five-dimensional fake supergravity
In recent series of papers, we found an arbitrary dimensional, time-evolving
and spatially-inhomogeneous solutions in Einstein-Maxwell-dilaton gravity with
particular couplings. Similar to the supersymmetric case the solution can be
arbitrarily superposed in spite of non-trivial time-dependence, since the
metric is specified by a set of harmonic functions. When each harmonic has a
single point source at the center, the solution describes a spherically
symmetric black hole with regular Killing horizons and the spacetime approaches
asymptotically to the Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmology.
We discuss in this paper that in 5-dimensions this equilibrium condition traces
back to the 1st-order "Killing spinor" equation in "fake supergravity" coupled
to arbitrary U(1) gauge fields and scalars. We present a 5-dimensional,
asymptotically FLRW, rotating black-hole solution admitting a nontrivial
"Killing spinor," which is a spinning generalization of our previous solution.
We argue that the solution admits nondegenerate and rotating Killing horizons
in contrast with the supersymmetric solutions. It is shown that the present
pseudo-supersymmetric solution admits closed timelike curves around the central
singularities. When only one harmonic is time-dependent, the solution oxidizes
to 11-dimensions and realizes the dynamically intersecting M2/M2/M2-branes in a
rotating Kasner universe. The Kaluza-Klein type black holes are also discussed.Comment: 24 pages, 2 figures; v2: references added, to appear in PR
Optimal measurement precision of a nonlinear interferometer
We study the best attainable measurement precision when a double-well trap
with bosons inside acts as an interferometer to measure the energy difference
of the atoms on the two sides of the trap. We introduce time independent
perturbation theory as the main tool in both analytical arguments and numerical
computations. Nonlinearity from atom-atom interactions will not indirectly
allow the interferometer to beat the Heisenberg limit, but in many regimes of
the operation the Heisenberg limit scaling of measurement precision is
preserved in spite of added tunneling of the atoms and atom-atom interactions,
often even with the optimal prefactor.Comment: very close to published versio
Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception
Light sensing by tissues distinct from the eye occurs in diverse animal groups, enabling circadian control and phototactic behaviour. Extraocular photoreceptors may also facilitate rapid colour change in cephalopods and lizards, but little is known about the sensory system that mediates slow colour change in arthropods. We previously reported that slow colour change in twig-mimicking caterpillars of the peppered moth (Biston betularia) is a response to achromatic and chromatic visual cues. Here we show that the perception of these cues, and the resulting phenotypic responses, does not require ocular vision. Caterpillars with completely obscured ocelli remained capable of enhancing their crypsis by changing colour and choosing to rest on colour-matching twigs. A suite of visual genes, expressed across the larval integument, likely plays a key role in the mechanism. To our knowledge, this is the first evidence that extraocular colour sensing can mediate pigment-based colour change and behaviour in an arthropod
Probing anisotropies of gravitational-wave backgroundswith a space-based interferometer II: Perturbative reconstruction of a low-frequency skymap
We present a perturbative reconstruction method to make a skymap of
gravitational-wave backgrounds (GWBs) observed via space-based interferometer.
In the presence of anisotropies in GWBs, the cross-correlated signals of
observed GWBs are inherently time-dependent due to the non-stationarity of the
gravitational-wave detector. Since the cross-correlated signal is obtained
through an all-sky integral of primary signals convolving with the antenna
pattern function of gravitational-wave detectors, the non-stationarity of
cross-correlated signals, together with full knowledge of antenna pattern
functions, can be used to reconstruct an intensity map of the GWBs. Here, we
give two simple methods to reconstruct a skymap of GWBs based on the
perturbative expansion in low-frequency regime. The first one is based on
harmonic-Fourier representation of data streams and the second is based on
"direct" time-series data. The latter method enables us to create a skymap in a
direct manner. The reconstruction technique is demonstrated in the case of the
Galactic gravitational wave background observed via planned space
interferometer, LISA. Although the angular resolution of low-frequency skymap
is rather restricted, the methodology presented here would be helpful in
discriminating the GWBs of galactic origins by those of the extragalactic
and/or cosmological origins.Comment: 23 pages, 12 figures, Phys.Rev.D (2005) in pres
Study of HST counterparts to Chandra X-ray sources in the Globular Cluster M71
We report on archival Hubble Space Telescope (HST) observations of the
globular cluster M71 (NGC 6838). These observations, covering the core of the
globular cluster, were performed by the Advanced Camera for Surveys (ACS) and
the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r_h =
1.65') of M71, we find 33 candidate optical counterparts to 25 out of 29
Chandra X-ray sources while outside the half-mass radius, 6 possible optical
counterparts to 4 X-ray sources are found. Based on the X-ray and optical
properties of the identifications, we find 1 certain and 7 candidate
cataclysmic variables (CVs). We also classify 2 and 12 X-ray sources as certain
and potential chromospherically active binaries (ABs), respectively. The only
star in the error circle of the known millisecond pulsar (MSP) is inconsistent
with being the optical counterpart. The number of X-ray faint sources with
L_x>4x10^{30} ergs/s (0.5-6.0 keV) found in M71 is higher than extrapolations
from other clusters on the basis of either collision frequency or mass. Since
the core density of M71 is relatively low, we suggest that those CVs and ABs
are primordial in origin.Comment: 12 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
Cylindrical gravitational waves in expanding universes: Models for waves from compact sources
New boundary conditions are imposed on the familiar cylindrical gravitational
wave vacuum spacetimes. The new spacetime family represents cylindrical waves
in a flat expanding (Kasner) universe. Space sections are flat and nonconical
where the waves have not reached and wave amplitudes fall off more rapidly than
they do in Einstein-Rosen solutions, permitting a more regular null inifinity.Comment: Minor corrections to references. A note added in proo
Virtual Resonant States in Two-Photon Decay Processes: Lower-Order Terms, Subtractions, and Physical Interpretations
We investigate the two-photon decay rate of a highly excited atomic state
which can decay to bound states of lower energy via cascade processes. We show
that a naive treatment of the process, based on the introduction of
phenomenological decay rates for the intermediate, resonant states, leads to
lower-order terms which need to be subtracted in order to obtain the coherent
two-photon correction to the decay rate. The sum of the lower-order terms is
exactly equal to the one-photon decay rate of the initial state, provided the
naive two-photon decay rates are summed over all available two-photon channels.
A quantum electrodynamics (QED) treatment of the problem leads to an
"automatic" subtraction of the lower-order terms.Comment: 8 pages, RevTe
Reconstructing a Simple Polytope from its Graph
Blind and Mani (1987) proved that the entire combinatorial structure (the
vertex-facet incidences) of a simple convex polytope is determined by its
abstract graph. Their proof is not constructive. Kalai (1988) found a short,
elegant, and algorithmic proof of that result. However, his algorithm has
always exponential running time. We show that the problem to reconstruct the
vertex-facet incidences of a simple polytope P from its graph can be formulated
as a combinatorial optimization problem that is strongly dual to the problem of
finding an abstract objective function on P (i.e., a shelling order of the
facets of the dual polytope of P). Thereby, we derive polynomial certificates
for both the vertex-facet incidences as well as for the abstract objective
functions in terms of the graph of P. The paper is a variation on joint work
with Michael Joswig and Friederike Koerner (2001).Comment: 14 page
- …