436 research outputs found

    Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean

    Get PDF
    Organic material entering the oceanic mesopelagic zone may either reenter the euphotic zone or settle into deeper waters. Therefore it is important to know about mechanisms and efficiency of substrate conversion in this water layer. Bacterial biomass, bacteria secondary production (BSP). extra­cellular peptidase activity (EPA) and particulate organic nitrogen (PON) were measured in vertical pro­files of the North Atlantic (46° N 18° W; 57° N 23° W) during the Joint Global Ocean Flux Study (JGOFS) cruise in May 1989. The magnitude of these parameters decreased differently with depth. The strong­est decreases were observed for bacterial production (3H-thymidine incorporation) and peptide turn­over (using the substrate analog leucine-methylcoumarinylamide). Bacterial biomass and peptidase potential activity were not reduced as much in the mesopelagic zone. Peptidase potential per unit cell biomass of mesopelagic bacteria was 2 to 3 times higher than that of bacteria in surface water. Nevertheless bacterial growth at depth was slow, due to slow actual hydrolysis. Values of theoretical PON hydrolysis were calculated from PON measurements and protein hydrolysis rates. These corre­sponded well to bacterial production rates, and the degree of correspondence increased from a factor of 0.63 (PON hydrolysis/ESP) in the mixed surface layer to 0.87 in the mesopelagic zone. Thus we hypothesized an effective coupling between particle hydrolysis and uptake of hydrolysate by bacteria, which depletes the deeper water of easily degradable substrates as hydrolysates usually are. The low enzymatic PON turnover rate of 0.04 d- 1 in the subeuphotic zone suggests that residence time of parti­cles within a depth stratum may be important for its contribution to export. storage and recycling of organic matter

    A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic Euphotic Zone

    Get PDF
    A seven-component upper ocean ecosystem model of nitrogen cycling calibrated with observations at Bermuda Station “S” has been coupled to a three-dimensional seasonal general circulation model (GCM) of the North Atlantic ocean. The aim of this project is to improve our understanding of the role of upper ocean biological processes in controlling surface chemical distributions, and to develop approaches for assimilating large data sets relevant to this problem. A comparison of model predicted chlorophyll with satellite coastal zone color scanner observations shows that the ecosystem model is capable of responding realistically to a variety of physical forcing environments. Most of the discrepancies identified are due to problems with the GCM model. The new production predicted by the model is equivalent to 2 to 2.8 mol m−2 yr−1 of carbon uptake, or 8 to 12 GtC/yr on a global scale. The southern half of the subtropical gyre is the only major region of the model with almost complete surface nitrate removal (nitrate<0.1 mmol m−3). Despite this, almost the entire model is nitrate limited in the sense that any addition of nitrate supply would go predominantly into photosynthesis. The only exceptions are some coastal upwelling regions and the high latitudes during winter, where nitrate goes as high as ∼10 mmol m−3

    Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea

    Get PDF
    Lability of the bulk dissolved organic carbon (DOG) pool and the amount available to bacterioplankton on short time scales (hours to days) were examined in oligotrophic Sargasso Sea water (near Bermuda). We examined bacterial growth and DOC utilization using seawater culture methodology in combination with measurements of bacterial abundance, cell volume, and DOC. Bulk DOC concentrations were determined by high temperature combustion (HTC) analysis, which proved to be a sensitive method for detecting small changes in natural concentration of DOG. Measurable bacterial growth and DOC utilization only occurred in unamended cultures when initial DDC concentrations were greater than observed in the mixed layer at the Bermuda Atlantic Time Series station. In unamended cultures exhibiting growth, approximately 6 to 7% of the bulk pool was available and considered a labile component. This material was utilized with an average bacterial growth efficiency (BGE) of 14 +/- 6%. Nutrient enrichment experiments were also conducted with NH4, PO4, glucose, dissolved free amino acid (DFAA) and algal lysate additions. In all experiments bacterial growth rates, bacterial carbon production, and BGE increased with the addition of organic carbon supplements. There were no enhancements of bacterial production or DOC utilization above the control when inorganic nutrients were added, indicating that at the lime these experiments were conducted bacterial growth was limited by available carbon

    Questioning the rise of gelatinous zooplankton in the World's oceans

    Get PDF
    During the past several decades, high numbers of gelatinous zooplankton species have been reported in many estuarine and coastal ecosystems. Coupled with media-driven public perception, a paradigm has evolved in which the global ocean ecosystems are thought to be heading toward being dominated by “nuisance” jellyfish. We question this current paradigm by presenting a broad overview of gelatinous zooplankton in a historicalcontext to develop the hypothesis that population changes reflect the human-mediated alteration of global ocean ecosystems. To this end, we synthesize information related to the evolutionary context of contemporary gelatinous zooplankton blooms, the human frame of reference forchanges in gelatinous zooplankton populations, and whether sufficient data are available to have established the paradigm. We conclude that the current paradigm in which it is believed that there has been a global increase in gelatinous zooplankton is unsubstantiated, and we develop a strategy for addressing the critical questions about long-term, human-related changes in the sea as they relate to gelatinous zooplankton blooms

    Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica

    Get PDF
    We present the first densely-sampled hydrographic survey of the Amundsen Sea Polynya (ASP) region, including a detailed characterization of its freshwater distributions. Multiple components contribute to the freshwater budget, including precipitation, sea ice melt, basal ice shelf melt, and iceberg melt, from local and non-local sources. We used stable oxygen isotope ratios in seawater (δ18O) to distinguish quantitatively the contributions from sea ice and meteoric-derived sources. Meteoric fractions were high throughout the winter mixed layer (WML), with maximum values of 2–3% (±0.5%). Because the ASP region is characterized by deep WMLs, column inventories of total meteoric water were also high, ranging from 10–13 m (±2 m) adjacent to the Dotson Ice Shelf (DIS) and in the deep trough to 7–9 m (±2 m) in shallower areas. These inventories are at least twice those reported for continental shelf waters near the western Antarctic Peninsula. Sea ice melt fractions were mostly negative, indicating net (annual) sea ice formation, consistent with this area being an active polynya. Independently determined fractions of subsurface glacial meltwater (as one component of the total meteoric inventory) had maximum values of 1–2% (±0.5%), with highest and shallowest maximum values at the DIS outflow (80–90 m) and in iceberg-stirred waters (150–200 m). In addition to these upwelling sites, contributions of subsurface glacial meltwater could be traced at depth along the ~ 27.6 isopycnal, from which it mixes into the WML through various processes. Our results suggest a quasi-continuous supply of melt-laden iron-enriched seawater to the euphotic zone of the ASP and help to explain why the ASP is Antarctica’s most biologically productive polynya per unit area

    A nitrogen-based model of plankton dynamics in the oceanic mixed layer

    Get PDF
    As a first step toward the development of coupled, basin scale models of ocean circulation and biogeochemical cycling, we present a model of the annual cycles of plankton dynamics and nitrogen cycling in the oceanic mixed layer. The model is easily modified and runs in FORTRAN on a personal computer. In our initial development and exploration of the model\u27s behavior we have concentrated on modeling the annual cycle at Station S near Bermuda using seven compartments (Phytoplankton, Zooplankton, Bacteria, Nitrate, Ammonium, Dissolved organic nitrogen and Detritus). This choice of compartments and the attendant flows (fluxes or intercompartmental exchanges) permits a functional distinction between new and regenerated production. We have examined over 200 different runs and carried out sensitivity analyses. Results of model runs with detrital sinking rates of 1 and 10 meters per day are presented. In these runs, the phytoplankton biomass-specific mortality rate was varied to adjust the annual net primary production (NPP) for the mixed layer to a value equivalent to 45 gC m−2, which was calculated from the literature. Modelled cycles of zooplankton and bacterial stocks, and magnitudes of their annual production which cannot be validated due to sparse observations, are driven by the amplitude of the spring bloom and by changes in foodweb structure. Most, but not all model runs exhibit a spring bloom triggered by the winter depression of zooplankton stocks and the vernal increase in solar irradiance. The bloom is driven by nitrate entrained into the mixed layer during the wintertime deepening of the mixed layer. Following the shoaling of the pycnocline to ca 20 m, nitrate supply is limited to diffusional inputs, nitrate stocks are depleted, and regenerated production exceeds new production. The resulting cycles of new and regenerated production produce an annual cycle of the f-ratio with winter maxima approaching 0.8–0.9 and summer minima reaching ca 0.1–0.2, with annual values averaging 0.7. The model reproduces the Eppley Curve, a hyperbolic relationship of increasing f with increasing primary production. This curve is shown to be the trajectory of the production system in the f-NPP phase plane. These model runs reproduce the annual cycles of areal NPP, and average annual NPP, new production, and particulate N flux values reported in the literature. The model demonstrates that currently accepted values for these annual fluxes can be reconciled only if the f-ratio has a high annual average. At present, the annual average f-ratio is poorly quantified due to severe undersampling in fall and winter. Our model\u27s ecological structure has been successfully incorporated into the Princeton general circulation model for the North Atlantic Ocean

    Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model

    Get PDF
    The annual cycle of the plankton dynamics in the central Black Sea is studied by a one-dimensional vertically resolved physical-biological upper ocean model, coupled with the Mellor-Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in particular, formation of the cold intermediate water mass and yearly evolution of the upper layer stratification, the annual cycle of production with the fall and the spring blooms, and the subsurface phytoplankton maximum layer in summer, as well as realistic patterns of particulate organic carbon and nitrogen. The computed seasonal cycles of the chlorophyll and primary production distributions over the euphotic layer compare reasonably well with the data. Initiation of the spring bloom is shown to be critically dependent on the water column stability. It commences as soon as the convective mixing process weakens and before the seasonal stratification of surface waters begins to develop. It is followed by a weaker phytoplankton production at the time of establishment of the seasonal thermocline in April. While summer nutrient concentrations in the mixed layer are low enough to limit production, the layer between the thermocline and the base of the euphotic zone provides sufficient light and nutrient to support subsurface phytoplankton development. The autumn bloom takes place some time between October and December depending on environmental conditions. In the case of weaker grazing pressure to control the growth rate, the autumn bloom shifts to December-January and emerges as the winter bloom or, in some cases, is connected with the spring bloom to form one unified continuous bloom structure during the January-March period. These bloom structures are similar to the year-to-year variabilities present in the data
    corecore