967 research outputs found

    Sequence of the mouse Q4 class I gene and characterization of the gene product

    Get PDF
    The Q4 class I gene has been shown to participate in gene conversion events within the mouse major histocompatibility complex. Its complete genomic nucleotide sequence has been determined. The 5' half of Q4 resembles H-2 genes more strongly than other Q genes. Its 3' end, in contrast, is Q-like and contains a translational stop signal in exon 5 which predicts a polypeptide with an incomplete membrane spanning segment. The presence of two inverted B1 repeats suggests that part of the Q4 gene may be mobile within the genome. Gene transfer experiments have shown that the Q4 gene encodes a ß2-microglobulin associated polypeptide of Mr 41 000. A similar protein was found in activated mouse spleen cells. The Q4 polypeptide was found to be secreted both by spleen cells and by transfected fibroblasts and was not detectable on the cell surface. Antibody binding and twodimensional gel electrophoresis indicate that the Q4 molecule is identical to a mouse class I polypeptide, Qb-1, which has been previously described

    Ab Initio Study of Phase Stability in Doped TiO2

    Full text link
    Ab-initio density functional theory (DFT) calculations of the relative stability of anatase and rutile polymorphs of TiO2 were carried using all-electron atomic orbitals methods with local density approximation (LDA). The rutile phase exhibited a moderate margin of stability of ~ 3 meV relative to the anatase phase in pristine material. From computational analysis of the formation energies of Si, Al, Fe and F dopants of various charge states across different Fermi level energies in anatase and in rutile, it was found that the cationic dopants are most stable in Ti substitutional lattice positions while formation energy is minimised for F- doping in interstitial positions. All dopants were found to considerably stabilise anatase relative to the rutile phase, suggesting the anatase to rutile phase transformation is inhibited in such systems with the dopants ranked F>Si>Fe>Al in order of anatase stabilisation strength. Al and Fe dopants were found to act as shallow acceptors with charge compensation achieved through the formation of mobile carriers rather than the formation of anion vacancies

    Developmental and tissue-specific expression of the Q5k gene

    Get PDF
    Expression of the Q5k gene was examined by northern blot analysis and polymerase chain reaction (PCR) in the AKR mouse and various cell lines, each of the H-2k haplotype. Our results show that Q5k mRNA is present during the whole postimplantational development of the AKR embryo/fetus (gestation day 6 to 15). In the juvenile mouse (week 2 to 4) transcription of the Q5k gene persisted in all organs examined. In contrast, in the adult animal expression of the Q5k gene was limited to the thymus and uterus of the pregnant mouse. Upon malignant transformation, the amount of Q5k-specific mRNA increased dramatically in thymus and could also be observed in the spleen of thymoma bearing animals. Expression of the Q5k gene was also detectable in several transformed mouse cell lines. Mitogen stimulation or treatment with cytokines induced Q5k expression in primary spleen cell cultures. A possible explanation for the tissue-restricted expression in the adult AKR mouse is discussed
    corecore