16 research outputs found

    Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix

    Get PDF
    We report the broadband characterization of the propagation of light through a multiple scattering medium by means of its multispectral transmission matrix. Using a single spatial light modulator, our approach enables the full control of both the spatial and spectral properties of an ultrashort pulse transmitted through the medium. We demonstrate spatiotemporal focusing of the pulse at any arbitrary position and time with any desired spectral shape. Our approach opens new perspectives for fundamental studies of light-matter interaction in disordered media, and has potential applications in sensing, coherent control, and imaging

    Coherent spatio-temporal control of pulsed light through multiple scattering media

    Get PDF
    We report broadband characterization of the propagation of light through a multiply scattering medium by means of its Multi-Spectral Transmission Matrix. Using a single spatial light modulator, our approach enables the full control of both spatial and spectral properties of an ultrashort pulse transmitted through the medium. We demonstrate spatiotemporal focusing of the pulse at any arbitrary position and time with any desired spectral shape. Our approach opens new perspectives for fundamental studies of lightmatter interaction in disordered media, and has potential applications in coherent control and imaging

    Designing disorder

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordMetasurfaces can in principle provide a versatile platform for optical functionalities, but in practice designing and fabricating them to specifications can be difficult. Now, the realization of metasurfaces with engineered disorder allows for versatile optical components that combine the best features of periodic and random systems

    Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera

    Get PDF
    Spatial correlations between two photons are the key resource in realising many quantum imaging schemes. Measurement of the bi-photon correlation map is typically performed using single-point scanning detectors or single-photon cameras based on charged coupled device (CCD) technology. However, both approaches are limited in speed due to the slow scanning and the low frame rate of CCD-based cameras, resulting in data acquisition times on the order of many hours. Here, we employ a high frame rate, single-photon avalanche diode (SPAD) camera, to measure the spatial joint probability distribution of a bi-photon state produced by spontaneous parametric down-conversion, with statistics taken over 107 frames. Through violation of an Einstein–Podolsky–Rosen criterion by 227 sigmas, we confirm the presence of spatial entanglement between our photon pairs. Furthermore, we certify, in just 140 s, an entanglement dimensionality of 48. Our work demonstrates the potential of SPAD cameras in the rapid characterisation of photonic entanglement, leading the way towards real-time quantum imaging and quantum information processing

    Programmable linear quantum networks with a multimode fibre

    No full text
    Reconfigurable quantum circuits are fundamental building blocks for the implementation of scalable quantum technologies. Their implementation has been pursued in linear optics through the engineering of sophisticated interferometers1–3. Although such optical networks have been successful in demonstrating the control of small-scale quantum circuits, scaling up to larger dimensions poses significant challenges4,5. Here, we demonstrate a potentially scalable route towards reconfigurable optical networks based on the use of a multimode fibre and advanced wavefront shaping techniques. We program networks involving spatial and polarization modes of the fibre and experimentally validate the accuracy and robustness of our approach using two-photon quantum states. In particular, we illustrate the reconfigurability of our platform by emulating a tunable coherent absorption experiment6. By demonstrating reliable reprogrammable linear transformations, with the prospect to scale, our results highlight the potential of complex media driven by wavefront shaping for quantum information processing

    Manipulating a non-classical state of light propagating through a multiply scattering medium

    No full text
    In this work, we use wavefront shaping methods to control non-classical states of light propagating through a multiply scattering medium. We experimentally show guiding of a single-photon into a selected single-mode fiber after propagation through the medium, and demonstrate generation of a one-photon entangled state. © 2014 OSA

    Quantum optics of lossy asymmetric beam splitters

    No full text
    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2Ă—\times2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers
    corecore