1,631 research outputs found

    The Liberal Commons

    Get PDF

    Fixation dynamics of beneficial alleles in prokaryotic polyploid chromosomes and plasmids

    Get PDF
    Theoretical population genetics has been mostly developed for sexually reproducing diploid and for monoploid (haploid) organisms, focusing on eukaryotes. The evolution of bacteria and archaea is often studied by models for the allele dynamics in monoploid populations. However, many prokaryotic organisms harbor multicopy replicons—chromosomes and plasmids—and theory for the allele dynamics in populations of polyploid prokaryotes remains lacking. Here, we present a population genetics model for replicons with multiple copies in the cell. Using this model, we characterize the fixation process of a dominant beneficial mutation at 2 levels: the phenotype and the genotype. Our results show that depending on the mode of replication and segregation, the fixation of the mutant phenotype may precede genotypic fixation by many generations; we term this time interval the heterozygosity window. We furthermore derive concise analytical expressions for the occurrence and length of the heterozygosity window, showing that it emerges if the copy number is high and selection strong. Within the heterozygosity window, the population is phenotypically adapted, while both alleles persist in the population. Replicon ploidy thus allows for the maintenance of genetic variation following phenotypic adaptation and consequently for reversibility in adaptation to fluctuating environmental conditions

    Characterizing Scales of Genetic Recombination and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis

    Full text link
    Pathogenic bacteria present a large disease burden on human health. Control of these pathogens is hampered by rampant lateral gene transfer, whereby pathogenic strains may acquire genes conferring resistance to common antibiotics. Here we introduce tools from topological data analysis to characterize the frequency and scale of lateral gene transfer in bacteria, focusing on a set of pathogens of significant public health relevance. As a case study, we examine the spread of antibiotic resistance in Staphylococcus aureus. Finally, we consider the possible role of the human microbiome as a reservoir for antibiotic resistance genes.Comment: 12 pages, 6 figures. To appear in AMT 2014 Special Session on Advanced Methods of Interactive Data Mining for Personalized Medicin

    Low-temperature dependence of the thermo-magnetic transport properties of the SrTiO3/LaAlO3 interface

    Full text link
    We report transport measurements, including: Hall, Seebeck and Nernst Effect. All these transport properties exhibit anomalous field and temperature dependences, with a change of behavior observed at about H 1.5T and T 15K. We were able to reconcile the low-temperature-low-field behavior of all transport properties using a simple two band analysis. A more detailed model is required in order to explain the high magnetic field regime.Comment: 6 pages, 7 figure

    Seed-derived microbial colonization of Wild Emmer and domesticated bread wheat (Triticum dicoccoides and T. aestivum) seedlings shows pronounced differences in overall diversity and composition

    Get PDF
    The composition of the plant microbiota may be altered by ecological and evolutionary changes in the host population. Seed-associated microbiota, expected to be largely vertically transferred, have the potential to coadapt with their host over generations. Strong directional selection and changes in the genetic composition of plants during domestication and cultivation may have impacted the assembly and transmission of seed-associated microbiota. Nonetheless, the effect of plant speciation and domestication on the composition of these microbes is poorly understood. Here, we have investigated the composition of bacteria and fungi associated with the wild emmer wheat (Triticum dicoccoides) and domesticated bread wheat (Triticum aestivum). We show that vertically transmitted bacteria, but not fungi, of domesticated bread wheat species T. aestivum are less diverse and more inconsistent among individual plants compared to those of the wild emmer wheat species T. dicoccoides. We propagated wheat seeds under sterile conditions to characterize the colonization of seedlings by seed-associated microbes. Hereby, we show markedly different community compositions and diversities of leaf and root colonizers of the domesticated bread wheat compared to the wild emmer wheat. By propagating the wild emmer wheat and domesticated bread wheat in two different soils, we furthermore reveal a small effect of plant genotype on microbiota assembly. Our results suggest that domestication and prolonged breeding have impacted the vertically transferred bacteria, but only to a lesser extent have affected the soil-derived microbiota of bread wheat.IMPORTANCE Genetic and physiological changes associated with plant domestication have been studied for many crop species. Still little is known about the impact of domestication on the plant-associated microbiota. In this study, we analyze the seed-associated and soil-derived bacterial and fungal microbiota of domesticated bread wheat and wild emmer wheat. We show a significant difference in the seed-associated, but not soil-derived, bacterial communities of the wheat species. Interestingly, we find less pronounced effects on the fungal communities. Overall, this study provides novel insight into the diversity of vertically transmitted microbiota of wheat and thereby contributes to our understanding of wheat as a “}metaorganism.{” Insight into the wheat microbiota is of fundamental importance for the development of improved crops

    The role of declining ataxia-telangiectasia-mutated (ATM) function in oocyte aging

    Get PDF
    Despite the advances in the understanding of reproductive physiology, the mechanisms underlying ovarian aging are still not deciphered. Recent research found an association between impaired ATM-mediated DNA double-strand break (DSB) repair mechanisms and oocyte aging. However, direct evidence connecting ATM-mediated pathway function decline and impaired oocyte quality is lacking. The objective of this study was to determine the role of ATM-mediated DNA DSB repair in the maintenance of oocyte quality in a mouse oocyte knockdown model. Gene interference, in vitro culture, parthenogenesis coupled with genotoxicity assay approaches, as well as molecular cytogenetic analyses based upon next-generation sequencing, were used to test the hypothesis that intact ATM function is critical in the maintenance of oocyte quality. We found that ATM knockdown impaired oocyte quality, resulting in poor embryo development. ATM knockdown significantly lowered or blocked the progression of meiosis in vitro, as well as retarding and reducing embryo cleavage after parthenogenesis. After ATM knockdown, all embryos were of poor quality, and none reached the blastocyst stage. ATM knockdown was also associated with an increased aneuploidy rate compared to controls. Finally, ATM knockdown increased the sensitivity of the oocytes to a genotoxic active metabolite of cyclophosphamide, with increased formation of DNA DSBs, reduced survival, and earlier apoptotic death compared to controls. These findings suggest a key role for ATM in maintaining oocyte quality and resistance to genotoxic stress, and that the previously observed age-induced decline in oocyte ATM function may be a prime factor contributing to oocyte aging

    Relationship satisfaction in couples confronted with colorectal cancer: the interplay of past and current spousal support

    Get PDF
    Based on attribution theory, this study hypthesized that past spousal supportiveness may act as a moderator of the link between one partner’s current support behavior and the other partner’s relationship satisfaction. A sample of 88 patients with colorectal cancer and their partners completed questionnaires approximately 3 and 9 months after diagnosis. The data were analyzed employing dyadic data analytic approaches. In the short-term, spousal active engagement—which involved discussing feelings and engaging in joint problem solving—was positively associated with relationship satisfaction in patients as well as in partners, but only when past spousal support was relatively low. Spousal protective buffering—which involved hiding worries and fears and avoiding talking about the disease—was negatively associated with relationship satisfaction in patients, again only when past spousal support was relatively low. If past spousal support was high, participants rated the quality of their relationship relatively high, regardless of their partner’s current support behavior. Over time, past spousal supportiveness was not found to mitigate the negative association between spousal protective buffering and relationship satisfaction. Overall, our results indicate that relationship satisfaction can be maintained if past spousal supportiveness is high even if the partner is currently not very responsive to the individual’s needs, at least in the short-term
    • 

    corecore