3,789 research outputs found

    Spectroscopy of q3qˉ3\rm{q}^3\bar{\rm{q}}^3-States in Quark Model and Baryon-Antibaryon Enhancements

    Full text link
    We study the mass spectrum of the q3qˉ3\rm{q}^3\bar{\rm{q}}^3 mesons both from the quark model with triquark correlations and from common quark model with colormagnetic interactions and with relative S-waves between quarks. Two cluster configurations (q3)(qˉ3)(\rm{q}^3)-(\bar{\rm{q}}^3) and (q2qˉ)(qqˉ2)(\rm{q}^2\bar{\rm{q}})-(\rm{q}\bar{\rm{q}}^2) are considered. In the spectrum we find rather stable states which have the same quantum number with particle resonances which are corresponding to the ppˉp\bar{p} enhancement, pΛˉp\bar{\Lambda} enhancement and ΛΛˉ\Lambda\bar{\Lambda} enhancement with spin-0\mathbf{0} or 1\mathbf{1}. This imply these enhancements are NOT experimental artifacts. The color-spin-flavor structures of ppˉp\bar{p}, pΛˉp\bar{\Lambda}, and ΛΛˉ\Lambda\bar{\Lambda} enhancements are revealed. The existence of spin-1\mathbf{1} ΛΛˉ,pΛˉ,ppˉ\Lambda\bar{\Lambda}, p\bar{\Lambda}, p\bar{p} enhancements is predicted.Comment: 45 pages, 5 figure

    Extraction of differential expressing aphid-resistance genes of sorghum (Sorghum bicolor L. Monech) and construction of suppression subtractive hybridization (SSH) library

    Get PDF
    Experiments were conducted for the extraction of differential expressing aphid-resistance genes of sorghum (Sorghum bicolor L. Monech) in the experimental laboratories and fields of Hebei Agricultural University, China and Shenyang Agricultural University, Liaoning Province, China, during 2010 to 2011 and suppression subtractive hybridization (SSH) library was constructed. The seeds of two sorghum varieties (Henong-16 and Qian-3) were grown and aphids were infested through natural and artificial way on sorghum seedlings (10-day old) with a paint brush. Total mRNA was isolated from fresh leaves samples using Trizol reagent and plant RNA mate (TAKARA). Integrity of RNA was confirmed by 1.2% agarose gel electrophoresis. SSH was performed using PCR-Select cDNA subtraction kit user manual according to the manufacturer’s instruction (Clontech Laboratories, Inc, USA). cDNA that contained specific (differentially expressed) transcripts were denoted as tester and the reference cDNA as driver. Tester and driver cDNAs were hybridized after two rounds of subtractive suppression PCR and the pMD18-T vector (TAKARA, Dalian, China). After preliminary screening by subtractive hybridization, plasmid restriction enzyme digestion, colony PCR for 100 forward and 100 reverse clones were sequenced by two-way hybridization using Mega BACE1000 to obtain better quality of 200 expressed sequence tag (EST) sequences. Cross-match software and ClustalW2 were used to obtain vector sequence shielding and multiple comparisons. Using BLAST at NCBI database for homology comparisons, it was concluded that a number of EST sequences which had different degrees of homology with known proteins or genes and another six EST sequences did not have any significant homology in the database. These sequences might have representation for new and unknown genes, or higher variability of non-coding region cDNA sequences.Key words: Extraction, sorghum, SSH, aphid-resistance genes

    Комп’ютерне опрацювання фонокардіографічного сигналу синфазним методом для задач виявлення патології серця

    Get PDF
    Soft micro devices and stretchable electronics have attracted great interest for their potential applications in sensory skins and wearable bio-integrated devices. One of the most important steps in building printed circuits is the alignment of assembled micro objects. Previously, the capillary self-alignment of microchips driven by surface tension effects has been shown to be able to achieve high-throughput and high-precision in the integration of micro parts on rigid hydrophilic/superhydrophobic patterned surfaces. In this paper, the self-alignment of microchips on a patterned soft and stretchable substrate, which consists of hydrophilic pads surrounded by a superhydrophobic polydimethylsiloxane (PDMS) background, is demonstrated for the first time. A simple process has been developed for making superhydrophobic soft surface by replicating nanostructures of black silicon onto a PDMS surface. Different kinds of PDMS have been investigated, and the parameters for fabricating superhydrophobic PDMS have been optimized. A self-alignment strategy has been proposed that can result in reliable self-alignment on a soft PDMS substrate. Our results show that capillary self-alignment has great potential for building soft printed circuits

    Capillary-driven self-assembly of microchips on oleophilic/oleophobic patterned surface using adhesive droplet in ambient air

    Get PDF
    This letter describes a capillary-driven self-assembly technique using oleophilic/oleophobic patternedsurface and adhesive in ambient air environment. We use a topographical microstructure of porous ormocer functionalized with a fluorinated trichlorosilane for the oleophobic area and goldpatterns for the oleophilic area. The resulted oleophilic/oleophobic patterns show significant wettability contrast for adhesive (Delo 18507), with a contact angle of 119° on oleophobic part and 53° on the oleophilic part. Self-alignment of SU-8 microchips on the oleophilic/oleophobic patterns has been demonstrated. The results provide a promising solution for self-alignment of microparts using commercial adhesives in ambient air environment.Peer reviewe

    Fragmentation Function and Hadronic Production of the Heavy Supersymmetric Hadrons

    Full text link
    The light top-squark \sto may be the lightest squark and its lifetime may be `long enough' in a kind of SUSY models which have not been ruled out yet experimentally, so colorless `supersymmetric hadrons (superhadrons)' (\sto \bar{q}) (qq is a quark except tt-quark) may be formed as long as the light top-squark \sto can be produced. Fragmentation function of \sto to heavy `supersymmetric hadrons (superhadrons)' (\sto \bar{Q}) (Qˉ=cˉ\bar{Q}=\bar{c} or bˉ\bar{b}) and the hadronic production of the superhadrons are investigated quantitatively. The fragmentation function is calculated precisely. Due to the difference in spin of the SUSY component, the asymptotic behavior of the fragmentation function is different from those of the existent ones. The fragmentation function is also applied to compute the production of heavy superhadrons at hadronic colliders Tevatron and LHC under the so-called fragmentation approach. The resultant cross-section for the heavy superhadrons is too small to observe at Tevatron, but great enough at LHC, even when all the relevant parameters in the SUSY models are taken within the favored region for the heavy superhadrons. The production of `light superhadrons' (\sto \bar{q}) (q=u,d,sq=u, d, s) is also roughly estimated. It is pointed out that the production cross-sections of the light superhadrons (\sto \bar{q}) may be much greater than those of the heavy superhadrons, so that even at Tevatron the light superhadrons may be produced in great quantities.Comment: 20 pages, 9 figure

    Slot-mode-coupled optomechanical crystals

    Get PDF
    We present a design methodology and analysis of a cavity optomechanical system in which a localized GHz frequency mechanical mode of a nanobeam resonator is evanescently coupled to a high quality factor (Q>10^6) optical mode of a separate nanobeam optical cavity. Using separate nanobeams provides flexibility, enabling the independent design and optimization of the optics and mechanics of the system. In addition, the small gap (approx. 25 nm) between the two resonators gives rise to a slot mode effect that enables a large zero-point optomechanical coupling strength to be achieved, with g/2pi > 300 kHz in a Si3N4 system at 980 nm and g/2pi approx. 900 kHz in a Si system at 1550 nm. The fact that large coupling strengths to GHz mechanical oscillators can be achieved in SiN is important, as this material has a broad optical transparency window, which allows operation throughout the visible and near-infrared. As an application of this platform, we consider wide-band optical frequency conversion between 1300 nm and 980 nm, using two optical nanobeam cavities coupled on either side to the breathing mode of a mechanical nanobeam resonator

    One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    Get PDF
    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan
    corecore