14 research outputs found

    Identification of Mycobacterium tuberculosis-Specific Th1, Th17 and Th22 Cells Using the Expression of CD40L in Tuberculous Pleurisy

    Get PDF
    Important advances have been made in the immunodiagnosis of tuberculosis (TB) based on the detection of Mycobacterium tuberculosis (MTB)-specific T cells. However, the sensitivity and specificity of the immunological approach are relatively low because there are no specific markers for antigen-specific Th cells, and some of the Th cells that do not produce cytokines can be overlooked using this approach. In this study, we found that MTB-specific peptides of ESAT-6/CFP-10 can stimulate the expression of CD40L specifically in CD4+ T cells but not other cells from pleural fluid cells (PFCs) in patients with tuberculous pleurisy (TBP). CD4+CD40L+ but not CD4+CD40L− T cells express IFN-Îł, IL-2, TNF-α, IL-17 or IL-22 after stimulation with MTB-specific peptides. In addition, CD4+CD40L+ T cells were found to be mostly polyfunctional T cells that simultaneously produce IFN-Îł, IL-2 and TNF-α and display an effector or effector memory phenotype (CD45RA−CD45RO+CCR7−CD62L−ICOS−). To determine the specificity of CD4+CD40L+ T cells, we incubated PFCs with ESTA-6/CFP-10 peptides and sorted live CD4+CD40L+ and CD4+CD40L− T cells by flow cytometry. We further demonstrated that sorted CD4+CD40L+, but not CD4+CD40L− fractions, principally produced IFN-Îł, IL-2, TNF-α, IL-17 and IL-22 following restimulation with ESTA-6/CFP-10 peptides. Taken together, our data indicate that the expression of CD40L on MTB-specific CD4+ T cells could be a good marker for the evaluation and isolation of MTB-specific Th cells and might also be useful in the diagnosis of TB

    Intracellular staining for cytokines and transcription factors

    Full text link
    Within the past years immune cells in general and T cells in particular have been categorized into a vast variety of subsets with different functional properties. One of the key technologies fueling this emerging complexity is intracellular staining for effector cytokines and/or lineage-defining transcription factors. Here we discuss the critical steps for performing successful multicolor immunophenotyping of mouse T cells in combination with analysis of intracellular molecules after ex vivo isolation

    Lineage specificity of gene expression patterns

    Get PDF
    The hematopoietic system offers many advantages as a model for understanding general aspects of lineage choice and specification. Using oligonucleotide microarrays, we compared gene expression patterns of multiple purified hematopoietic cell populations, including neutrophils, monocytes, macrophages, resting, centrocytic, and centroblastic B lymphocytes, dendritic cells, and hematopoietic stem cells. Some of these cells were studied under both resting and stimulated conditions. We studied the collective behavior of subsets of genes derived from the Biocarta database of functional pathways, hand-tuned groupings of genes into broad functional categories based on the Gene Ontology database, and the metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes database. Principal component analysis revealed strikingly pervasive differences in relative levels of gene expression among cell lineages that involve most of the subsets examined. These results indicate that many processes in these cells behave differently in different lineages. Much of the variation among lineages was captured by the first few principal components. Principal components biplots were found to provide a convenient visual display of the contributions of the various genes within the subsets in lineage discrimination. Moreover, by applying tree-constructing methodologies borrowed from phylogenetics to the expression data from differentiated cells and stem cells, we reconstructed a tree of relationships that resembled the established hematopoietic program of lineage development. Thus, the mRNA expression data implicitly contained information about developmental relationships among cell types

    Characterization of tumor-directed cellular immune responses in humans

    No full text
    Understanding tumor/host immune interactions may help to fight cancer. Growing knowledge about T cell responses and increasing success of immunotherapeutic approaches have created the need for methods to characterize tumor-directed cellular immune responses. The spectrum of methods reaches from protein-based methods, including tetramers or intracellular flow cytometry, to genetic assays, such as TCR analysis or microarray techniques, further on to functional assays analysing proliferation and microtoxicity. Here, we describe these and further methods and explain their respective application in human tumor immunology
    corecore