225 research outputs found
Enhancing the energy resolution of resonant coherent excitation using the cooled U 89+ beam extracted from the ESR
Synopsis We report on the resonant coherent excitation (RCE) of the 2 s -2 p 3/2 transition in Li-like U 89+ with an enhanced energy resolution, which was achieved by reducing the projectiles momentum spread. The kinetic temperature of the beam was decreased by electron cooling in the ESR, and the collisional momentum broadening in the target was suppressed by the use of thin crystal (1.0 and 2.5 ÎŒm-thick). The resonance width was observed to be âŒ1.4 eV in FWHM, which is three-times narrower than that from the previous work
Electron gas polarization effect induced by heavy H-like ions of moderate velocities channeled in a silicon crystal
We report on the observation of a strong perturbation of the electron gas
induced by 20 MeV/u U ions and 13 MeV/u Pb ions channeled in
silicon crystals. This collective response (wake effect) in-duces a shift of
the continuum energy level by more than 100 eV, which is observed by means of
Radiative Electron Capture into the K and L-shells of the projectiles. We also
observe an increase of the REC probability by 20-50% relative to the
probability in a non-perturbed electron gas. The energy shift is in agreement
with calculations using the linear response theory, whereas the local electron
density enhancement is much smaller than predicted by the same model. This
shows that, for the small values of the adiabaticity parameter achieved in our
experiments, the density fluctuations are not strongly localized at the
vicinity of the heavy ions
Ion slowing down and charge exchange at small impact parameters selected by channeling: superdensity effects
CASInternational audienceIn two experiments performed with 20-30 MeV/u highly charged heavy ions (Pb56+, U91+) channeled through thin silicon crystals, we observed the original features of superdensity, associated to the glancing collisions with atomic rows undergone by part of the incident projectiles. In particular the very high collision rate yields a quite specific charge exchange regime, that leads to a higher ionization probability than in random conditions. X-ray measurements show that electrons captured in outershells are prevented from being stabilized, which enhances the lifetime of the projectile innershell vacancies. The charge state distributions and the energy loss spectra are compared to Monte-Carlo simulations. These simulations confirm, extend and illustrate the qualitative analysis of the experimental results
State-resolved valence shell photoionization of Be-like ions: experiment and theory
High-resolution photoionization experiments were carried out using beams of
Be-like C, N, and O ions with roughly equal populations of
the S ground-state and the P manifold of metastable components. The
energy scales of the experiments are calibrated with uncertainties of 1 to 10
meV depending on photon energy. Resolving powers beyond 20,000 were reached
allowing for the separation of contributions from the individual metastable
P, P, and P states. The measured data compare
favourably with semi-relativistic Breit-Pauli R-matrixComment: 23 figures and 3 table
- âŠ