98 research outputs found

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    Get PDF
    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe fluid-structure interaction models of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employ a version of Peskin's immersed boundary (IB) method with a finite element (FE) description of the structural elasticity. We develop both an idealized model of the root with three-fold symmetry of the aortic sinuses and valve leaflets, and a more realistic model that accounts for the differences in the sizes of the left, right, and noncoronary sinuses and corresponding valve cusps. As in earlier work, we use fiber-based models of the valve leaflets, but this study extends earlier IB models of the aortic root by employing incompressible hyperelastic models of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backwards displacement method that determines the unloaded configurations of the root models. Our models yield realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations demonstrate that IB models of the aortic valve are able to produce essentially grid-converged dynamics at practical grid spacings for the high-Reynolds number flows of the aortic root

    Simulation of the Three-Dimensional Hinge Flow Fields of a Bileaflet Mechanical Heart Valve Under Aortic Conditions

    Get PDF
    Thromboembolic complications of bileaflet mechanical heart valves (BMHV) are believed to be due to detrimental stresses imposed on blood elements by the hinge flows. Characterization of these flows is thus crucial to identify the underlying causes for complications. In this study, we conduct three-dimensional pulsatile flow simulations through the hinge of a BMHV under aortic conditions. Hinge and leaflet geometries are reconstructed from the Micro-Computed Tomography scans of a BMHV. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Physiologic flow boundary conditions and leaflet motion are extracted from the Fluid–Structure Interaction simulations of the bulk of the flow through a BMHV. Calculations reveal the presence, throughout the cardiac cycle, of flow patterns known to be detrimental to blood elements. Flow fields are characterized by: (1) complex systolic flows, with rotating structures and slow reverse flow pattern, and (2) two strong diastolic leakage jets accompanied by fast reverse flow at the hinge bottom. Elevated shear stresses, up to 1920 dyn/cm2 during systole and 6115 dyn/cm2 during diastole, are reported. This study underscores the need to conduct three-dimensional simulations throughout the cardiac cycle to fully characterize the complexity and thromboembolic potential of the hinge flows

    Numerical Investigation of the Performance of Three Hinge Designs of Bileaflet Mechanical Heart Valves

    Get PDF
    Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid–structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design

    Effect of Date Extract on Growth of Mutans Streptococci, the Most Important Factor of Dental Caries

    No full text
    ABSTRACT: Introduction & Objective:Dental caries is perhaps the most common bacterial infections in humans and Streptococcus Mutans is one of the most important factors in dental caries. Research has shown that some kind foods have an inhibitory effect on cariogenic factors of Mutans streptococci. The aim of this study was to investigate the effect of date extract on growth of Streptococcus Mutans. Methods & Materials: This experimental study was down at faculty of medicine, Yasuj university of medical sciences with collaborative of microbiology department of Shiraz university of medical sciences in 2005. In an In-vitro study, effect of date extract on growth of Mutans Streptococci was surveyed .After collecting of Streptococcus Mutans from dental caries those were cultured in different medium of date fruit, extract of date fruit and syrup of date with different concentrations. Results: Following 24 hours, Streptococcus mutans was grown in less concentration of date mediums and its grown was inhibited in more concentrations. Conclusion: With respect of inhibitory effect of date extract on growth of Streptococcus mutans,it might be introduced that date as a source of food has a preventive effect on dental caries

    Resiliens i urban hydrologi : En studie av dagvattenhantering i Stockholms Stad

    No full text
    The environmental issues of storm water in the urban environment is addressed in political policies on many different governance levels. The concept of “sustainable storm water” in Europe uses the natural water cycle as a template for urban drainage, and the EU has a water framework directive (WFD) with a systems approach, using drainage basins as the starting point of all actions. In Stockholm, a new storm water strategy was adopted in 2015 with a sustainability approach, using much of the terminology from the WFD and the Swedish Water & Wastewater Association. To find new aspects related to sustainable development of storm water management in Stockholm, this study used a resilience framework of seven principles to analyse the implementation of the Stockholm storm water strategy (SSWS). A mixed method approach was used for a qualitative study, using interviews and a review of policy documentation as the main data sources, complemented by a desk study of literature on the subject of storm water management, as well as participation in some relevant workshops. To broaden the study, examples from a developing area within the Stockholm municipality, Stora Sköndal, was used, as well as another municipality in the Baltic Sea region; Helsinki (Finland). The SSWS leans on the legislation of the environmental quality standards (EQS) but is lacking in authority coordination on a national and municipal level in Stockholm. Diversity in problem formulations and solutions for infrastructure is high, so is the diversity of involved stakeholders, which is an indication of resilience. This in combination with the structure and communicational links having questionable functionality, leads to a complex and inefficient structure in management of storm water, which undermines the resilience of the system. However, since the SSWS and other connected policies (such as local programmes of measures and sustainability requirements) are new, the system is undergoing change, which shows some level of adaptability and complex adaptive systems (CAS) thinking, another resilience indicator. The implementation of the WFD on a municipal level is also connected to CAS thinking, as well as a polycentric governance system -one of the seven resilience principles of the framework used. Some of the main issues found within this study for building resilience in the SES are related to follow-up and responsibility division.Miljöfrågor inom dagvatten hanteras i policyarbete på flera olika institutionella nivåer. Begreppet ”hållbart dagvatten” utgår i Europa från den naturliga vattencykeln och EU:s vattendirektiv (WFD) har en systeminriktning som utgår från avrinningsområden istället för andra geografiska gränsdragningar. Stockholms Stad antog en ny dagvattenstrategi 2015 med en hållbarhetsinriktning, som innehåller mycket terminologi från WFD och publikationer från branchorganisationen Svenskt Vatten AB. För att hitta nya aspekter för en hållbar utveckling av dagvattenhantering i Stockholm använder denna studie ett teoretiskt ramverk inom resiliens,, som bygger på sju principer, i en analys av stadens dagvattensstrategi (SSWS). Blandade metoder användes för att genomföra en kvalitativ studie, där policydokument granskades tillsammans med intervjuer av nyckelpersoner, vilket kompletterades med en skrivbordsstudie av litteratur om dagvattenhantering samt deltagande i relevanta workshops. För att bredda studien användes exempel från ett planprogramsområde inom Stockholms kommun, Stora Sköndal, liksom en annan kommun i Östersjöområdet; Helsingfors (Finland). SSWS bygger juridiskt på miljökvalitetsnormerna, men brister i myndighetssamordning på nationell och kommunal nivå i Stockholm. Problemformuleringar och infrastrukturlösningar har hög mångfald, precis som involverade aktörer, vilket är en indikation på att systemet bygger upp resiliens. Detta i kombination med att struktur och kommunikationslänkar är något bristfälliga leder till en komplex och ineffektiv dagvattenhantering, vilket underminerar resiliensen i systemet. Eftersom SSWS och andra relaterade styrdokument (t.ex. lokala åtgärdsprogram och hållbarhetskrav) är nya, genomgår systemet förändringar, vilket visar på anpassningsförmåga och komplext, adaptivt systemtänk (CAS), vilket är en ytterligare resiliensindikator. Implementeringen av WFD på kommunal nivå är också kopplad till CAS-tänkande, liksom ett polycentriskt styrsystem - en av de sju principerna för resiliens i det teoretiska ramverket som används. Några av de huvudsakliga problem för att bygga resiliens som hittades i denna studie är relaterade till uppföljning och ansvarsfördelning

    Design and Control of 3-DOF Robotic Fish ‘ICHTHUS V5.5’

    No full text
    corecore