101 research outputs found

    Tumour budding in oral squamous cell carcinoma : a meta-analysis

    Get PDF
    Background: Tumour budding has been reported as a promising prognostic marker in many cancers. This meta-analysis assessed the prognostic value of tumour budding in oral squamous cell carcinoma (OSCC). Methods: We searched OvidMedline, PubMed, Scopus and Web of Science for articles that studied tumour budding in OSCC. We used reporting recommendations for tumour marker (REMARK) criteria to evaluate the quality of studies eligible for meta-analysis. Results: A total of 16 studies evaluated the prognostic value of tumour budding in OSCC. The meta-analysis showed that tumour budding was significantly associated with lymph node metastasis (odds ratio = 7.08, 95% CI = 1.75-28.73), disease-free survival (hazard ratio = 1.83, 95% CI = 1.34-2.50) and overall survival (hazard ratio = 1.88, 95% CI = 1.25-2.82). Conclusions: Tumour budding is a simple and reliable prognostic marker for OSCC. Evaluation of tumour budding could facilitate personalised management of OSCC.Peer reviewe

    Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor

    Get PDF
    The human cathelicidin antimicrobial protein-18 and its C terminal peptide, LL-37, displays broad antimicrobial activity that is mediated through direct contact with the microbial cell membrane. In addition, recent studies reveal that LL-37 is involved in diverse biological processes such as immunomodulation, apoptosis, angiogenesis and wound healing. An intriguing role for LL-37 in carcinogenesis is also beginning to emerge and the aim of this paper was to explore if and how LL-37 contributes to the signaling involved in tumor development. To this end, we investigated the putative interaction between LL-37 and growth factor receptors known to be involved in tumor growth and progression. Among several receptors tested, LL-37 bound with the highest affinity to insulin-like growth factor 1 receptor (IGF-1R), a receptor that is strongly linked to malignant cellular transformation. Furthermore, this interaction resulted in a dose-dependent phosphorylation and ubiquitination of IGF-1R, with downstream signaling confined to the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)-pathway but not affecting phosphatidylinositol 3 kinase/Akt signaling. We found that signaling induced by LL-37 was dependent on the recruitment of β-arrestin to the fully functional IGF-1R and by using mutant receptors we demonstrated that LL-37 signaling is dependent on β-arrestin-1 binding to the C-terminus of IGF-1R. When analyzing the biological consequences of increased ERK activation induced by LL-37, we found that it resulted in enhanced migration and invasion of malignant cells in an IGF-1R/β-arrestin manner, but did not affect cell proliferation. These results indicate that LL-37 may act as a partial agonist for IGF-1R, with subsequent intra-cellular signaling activation driven by the binding of β-arrestin-1 to the IGF-1R. Functional experiments show that LL-37-dependent activation of the IGF-1R signaling resulted in increased migratory and invasive potential of malignant cells

    Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    Get PDF
    RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/-)) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5(-/-) developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5(-/-) compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/-) mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly

    Chapitre 14: Phytopathogènes et stratégies de contrôle en aquaponie

    Full text link
    peer reviewedAmong the diversity of plant diseases occurring in aquaponics, soil-borne pathogens, such as Fusarium spp., Phytophthora spp. and Pythium spp., are the most problematic due to their preference for humid/aquatic environment conditions. Phytophthora spp. and Pythium spp. which belong to the Oomycetes pseudo-fungi require special attention because of their mobile form of dispersion, the so-called zoospores that can move freely and actively in liquid water. In coupled aquaponics, curative methods are still limited because of the possible toxicity of pesticides and chemical agents for fish and beneficial bacteria (e.g. nitrifying bacteria of the biofilter). Furthermore, the development of biocontrol agents for aquaponic use is still at its beginning. Consequently, ways to control the initial infection and the progression of a disease are mainly based on preventive actions and water physical treatments. However, suppressive action (suppression) could happen in aquaponic environment considering recent papers and the suppressive activity already highlighted in hydroponics. In addition, aquaponic water contains organic matter that could promote establishment and growth of heterotrophic bacteria in the system or even improve plant growth and viability directly. With regards to organic hydroponics (i.e. use of organic fertilisation and organic plant media), these bacteria could act as antagonist agents or as plant defence elicitors to protect plants from diseases. In the future, research on the disease suppressive ability of the aquaponic biotope must be increased, as well as isolation, characterisation and formulation of microbial plant pathogen antagonists. Finally, a good knowledge in the rapid identification of pathogens, combined with control methods and diseases monitoring, as recommended in integrated plant pest management, is the key to an efficient control of plant diseases in aquaponics.Cos

    Arrestin-3 differentially regulates platelet GPCR subsets

    No full text

    β-Adrenergic regulation of Sertoli cell adenylyl cyclase: desensitization by homologous hormone

    No full text
    Incubation of Sertoli cell-enriched cultures with D,L-isoproterenol caused a time- and concentration-dependent,homologous desensitization of isoproterenol-responsive adenylyl cyclase, whereas the response toFSH was unaffected. Half-maximal desensitization was achieved within 1 h of preincubation, after which amore gradual loss of response was observed. Preincubation of Sertoli cells for 24 h with increasingconcentrations of D,L-isoproterenol demonstrated that the concentration required to obtain half-maximaldesensitization was approximately lo-fold lower than the K, for activation of adenylyl cyclase. Thefunction of the guanine nucleotide regulatory component (N-component) of the adenylyl cyclase complexin hormonally desensitized Sertoli cells, as evaluated by activation of adenylyl cyclase by GTP,GMPP(NH)P, fluoride and Mg2+, was not affected by the hormone pretreatment, Preincubation of Sertolicells with a high concentration of dbcAMP (10e3 M) for 24 h was associated with a 45% reduction inadenylyl cyclase activation by both FSH and isoproterenol. Also in this case fluoride- and GTP-stimulatedadenylyl cyclase activities were normal. However, the effects of dibutyryl cyclic AMP occurred much moreslowly than agonist-induced desensitization, indicating that CAMP may not be the primary mediator ofhomologous desensitization of Sertoli cell adenylyl cyclase by isoproterenol

    Studies on the mechanism of follicle-stimulating hormone-induced desensitization of sertoli cell adenylyl cyclase in vitro

    No full text
    When Sertoli cells were cultured in the presence of follicle-stimulating hormone (FSH), a time-and concentration-dependent desensitization of FSH-responsive adenylyl cyclase (AC) was observed. Maximal desensitization (80%) was attained after 6-9 h of incubation with FSH (10 micrograms/ml; NIH-FSH-S12). During 24 h of incubation the concentration of FSH causing a half-maximal desensitization was about 100 ng/ml. Removal of the hormone from the culture medium was associated with a gradual reappearance of the FSH response. Follicle-stimulating hormone-induced desensitization of Sertoli cell AC was specific for homologous hormone, since AC activation by isoproterenol was unaffected. Furthermore, AC activity of control and FSH-desensitized cells was equally activated by GTP and fluoride, showing that the interaction of the guanyl nucleotide regulatory (N) component with the catalytic subunit is not affected during FSH-induced desensitization. A loss in specific FSH binding was detected after 9 and 24 h of exposure to FSH, but not at shorter times of incubation. Desensitization of Sertoli cell AC to both FSH and isoproterenol stimulation could also be achieved by dibutyryl cyclic AMP (dbcAMP); however, a 30-40% desensitization required a high nucleotide concentration (1 mM) and a long incubation time (24 h). These results show that desensitization of Sertoli cell AC by FSH is associated with normal function of the N component, and precedes any significant loss in specific FSH binding sites. Furthermore, exogenous addition of dbcAMP (1 mM) did not cause the same effects on Sertoli cell AC as did FSH
    corecore