1,872 research outputs found
From medical data to simple virtual mock-up of scapulo-humeral joint
The surgical operations of shoulder joint are guided by various principles: osteosynthesis in the case of fracture, osteotomy in order to correct a deformation or to modify the functioning of the joint, or implementation of articular prosthesis. At the end of the twentieth century, many innovations in the domains of biomechanics and orthopedic surgery have been performed. Nevertheless, theoretical and practical problems may appear during the operation (visual field of surgeon is very limited, quality and shape of the bone is variable depending on the patient). Biomechanical criteria of success are defined for each intervention. For example, the installation with success of prosthetic implant will be estimated according to the degree of mobility of the new articulation, the movements of this articulation being function of the shape of the prosthesis and of its position on its osseous support. It is not always easy to optimize the preparation of the surgical operation for every patient, and a preliminary computer simulation would allow helping the surgeon in its choices and its preparation of the intervention. The techniques of virtual reality allow a high degree of immersion and allow envisaging the development of a navigation device during the operating act
Transport of Water and Gases through EVA/PVC blend films â Permeation and DSC investigations.
The transport of water vapor and gases (oxygen and carbon dioxide) through poly(ethylene-co-vinyl acetate) (EVA) films of different VA content, poly(vinylchloride) (PVC) and EVA/PVC blend films, was analysed from permeation measurements.
A plasticization effect of water on the material was observed for EVA films with more than 19% wt. of VA content and for the EVA/PVC blends, while for gas permeation practically all the experimental curves are characterized by a constant diffusion coefficient, whatever the VA content of the copolymer used. The increase in water absorption with the VA content leads to a steady increase in the water permeability of the EVA copolymers. By mixing the glassy PVC polymer with the EVA copolymer (in a rubbery state) reduced water and gas permeability is observed, resulting mainly from the decrease of the diffusivity due to the low segment mobility of the dense PVC material able to create hydrogen bonds between the hydrogen atoms and the Cl-substituted carbon of PVC with VA carbonyls. Compared to EVA copolymers, the EVA/PVC blends with equivalent VA contents are better in terms of selectivity
Parametric study of the mechanical properties of nanocrystalline TiN/CrN multilayer coatings with a special focus on the effect of coating thickness and substrate roughness
In a plot to improve the performance of steel mechanical parts subject to aggressive friction solicitations, three batches of deposits of TiN and CrN layers on steel substrates with two different roughnesses have been obtained using reactive DC magnetron sputtering. The present study was conducted to determine the effect of varying TiN/CrN multilayer coatings thickness (varying modulated period Î and interlayer thickness), on their mechanical and tribological properties. The morphological and the structural properties were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The nanoindentation measurements displayed improvement in hardness (> 40 GPa) and Youngâs modulus (> 600 GPa) for the coating with Î â
12 nm (TiN Î/2 â
7.5 nm + CrN Î/2 â
4.5 nm) thickness and the higher number (300) of interfaces, deposited on the rougher substrate. Its low coating damage under the scratch test, associated with its estimated adhesion work (Wad), indicated a good cohesive/adhesive strength and improved structural and mechanical properties
Search for neutrino emission from GRB 221009A using the KM3NeT ARCA and ORCA detectors
Gamma-ray bursts are promising candidate sources of high-energy astrophysical neutrinos. The recent GRB 221009A event, identified as the brightest gamma-ray burst ever detected, provides a unique opportunity to investigate hadronic emissions involving neutrinos. The KM3NeT undersea neutrino detectors participated in the worldwide follow-up effort triggered by the event, searching for neutrino events. In this paper, we summarize subsequent searches, in a wide energy range from MeV up to a few PeVs. No neutrino events are found in any of the searches performed. Upper limits on the neutrino emission associated with GRB 221009A are computed.The authors acknowledge the financial support of the funding agencies: Funds for Scientific Research (FRS-FNRS), Francqui foundation, BAEF foundation. Czech Science Foundation (GAÄR 24-12702S); Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission EuropĂ©enne (FEDER fund and Marie Curie Program), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ăle-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-22-13708), Georgia; The General Secretariat of Research and Innovation (GSRI), Greece; Istituto Nazionale di Fisica Nucleare (INFN) and Ministero dellâUniversitĂ e della Ricerca (MUR), through PRIN 2022 program (Grant PANTHEON 2022E2J4RK, Next Generation EU) and PON R&I program (Avviso n. 424 del 28 febbraio 2018, Progetto PACK-PIR01 00021), Italy; IDMAR project Po-Fesr Sicilian Region az. 1.5.1; A. De Benedittis, W. Idrissi Ibnsalih, M. Bendahman, A. Nayerhoda, G. Papalashvili, I. C. Rea, A. Simonelli have been supported by the Italian Ministero dellâUniversitĂ e della Ricerca (MUR), Progetto CIR01 00021 (Avviso n. 2595 del 24 dicembre 2019); KM3NeT4RR MUR Project National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 3.1, Funded by the European Union â NextGenerationEU,CUP I57G21000040001, Concession Decree MUR No. n. Prot. 123 del 21/06/2022; Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for Economic and Social Development, Kuwait; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The grant âAstroCeNT: Particle Astrophysics Science and Technology Centreâ, carried out within the International Research Agendas programme of the Foundation for Polish Science f inanced by the European Union under the European Regional Development Fund; Ministry of Research, Innovation and Digitalisation, Romania; Slovak Research and Development Agency under Contract No. APVV-22-0413; Ministry of Education, Research, Development and Youth of the Slovak Republic; MCIN for PID2021-124591NB-C41,-C42,-C43 and PDC2023-145913-I00 funded by MCIN/AEI/10.13039/501100011033 and by âERDF A way of making Europeâ, for ASFAE/2022/014 and ASFAE/2022 /023 with funding from the EU NextGenerationEU (PRTR-C17.I01) and Generalitat Valenciana, for Grant AST22_6.2 with funding from ConsejerĂa de Universidad, InvestigaciĂłn e InnovaciĂłn and Gobierno de España and European Union â NextGenerationEU, for CSIC-INFRA23013 and for CNS2023-144099, Generalitat Valenciana for CIDEGENT/2018/034, /2019/043, /2020/049, /2021/23, for CIDEIG/2023/20 and for GRISOLIAP/2021/192 and EU for MSC/101025085, Spain; The European Unionâs Horizon 2020 Research and Innovation Programme (ChETEC-INFRA â Project no. 101008324).Peer ReviewedArticle signat per 276 autors/es: S. Aiello A. Albert, M. Alshamsi, S. Alves Garre, A. Ambrosone, F. Amel, M. Andre, E. Androutsou, M. Anguita, L. Aphecetche, M. Ardid, S. Ardid, H. Atmani, J. Aublin, F. Badaracco, L. Bailly-Salins, Z. BardaÄovĂĄ, B. Baret, A. Bariego-Quintana, S. Basegmez du Pree, Y. Becherini, M. Bendahman, F. Benfenati, M. Benhassi, D.M. Benoit, E. Berbee, V. Bertin, S. Biagi, M. Boettcher, D. Bonanno, J. Boumaaza, M. Bouta, M. Bouwhuis, C. Bozza, R.M. Bozza, H. BrĂąnzaĆ, F. Bretaudeau, M. Breuhaus, R. Bruijn, J. Brunner, R. Bruno, E. Buis, R. Buompane, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, V. Carretero, T. Cartraud, P. Castaldi, V. Cecchini, S. Celli, L. Cerisy, M. Chabab, M. Chadolias, A. Chen, S. Cherubini, T. Chiarusi, M. Circella, R. Cocimano, J.A.B. Coelho, A. Coleiro, A. Condorelli, R. Coniglione, P. Coyle, A. Creusot, G. Cuttone, R. Dallier, Y. Darras, A. De Benedittis, B. De Martino, V. Decoene, R. Del Burgo, I. Del Rosso, L.S. Di Mauro, I. Di Palma, A.F. DĂaz, C. Diaz, D. Diego-Tortosa, C. Distefano, A. Domi, C. Donzaud, D. Dornic, M. Dörr, E. Drakopoulou, D. Drouhin, J.-G. Ducoin, R. DvornickĂœ, T. Eberl, E. EckerovĂĄ, A. Eddymaoui, T. van Eeden, M. Eff, D. van Eijk, I. El Bojaddaini, S. El Hedri, A. Enzenhöfer, G. Ferrara, M.D. FilipoviÄ, F. Filippini, D. Franciotti, L.A. Fusco, S. Gagliardini, T. Gal, J. GarcĂa MĂ©ndez, A. Garcia Soto, C. Gatius Oliver, N. GeiĂelbrecht, H. Ghaddari, L. Gialanella, B.K. Gibson, E. Giorgio, I. Goos, P. Goswami, S.R. Gozzini, R. Gracia, K. Graf, C. Guidi, B. Guillon, M. GutiĂ©rrez, C. Haack, H. van Haren, A. Heijboer, A. Hekalo, L. Hennig, J.J. HernĂĄndez-Rey, W. Idrissi Ibnsalih, G. Illuminati, D. Joly, M. de Jong, P. de Jong, B.J. Jung, O. Kalekin, U.F. Katz, L. Kharkhelauri, G. Kistauri, C. Kopper, A. Kouchner, V. Kueviakoe, V. Kulikovskiy, R. Kvatadze, M. Labalme, R. Lahmann, G. Larosa, C. Lastoria, A. Lazo, S. Le Stum, G. Lehaut, E. Leonora, N. Lessing, G. Levi, F. Longhitano, F. Magnani, J. Majumdar, L. Malerba, F. Mamedov, J. MaĆczak, A. Manfreda, M. Marconi, A. Margiotta, A. Marinelli, C. Markou, L. Martin, F. Marzaioli, M. Mastrodicasa, S. Mastroianni, S. MiccichĂš, G. Miele, P. Migliozzi, E. Migneco, M.L. Mitsou, C.M. Mollo, L. Morales-Gallegos, G. Moretti, A. Moussa, I. Mozun Mateo, R. Muller, M.R. Musone, M. Musumeci, S. Navas, A. Nayerhoda, C.A. Nicolau, B. Nkosi, B. Ă Fearraigh, V. Oliviero, A. Orlando, E. Oukacha, D. Paesani, J. Palacios GonzĂĄlez, G. Papalashvili, V. Parisi, E.J. Pastor Gomez, A.M. PÄun, G.E. PÄvÄlaĆ, I. Pelegris, S. Peña MartĂnez, M. Perrin-Terrin, J. Perronnel, V. Pestel, R. Pestes, P. Piattelli, C. PoirĂš, V. Popa, T. Pradier, J. Prado, S. Pulvirenti, C.A. Quiroz-Rangel, U. Rahaman, N. Randazzo, S. Razzaque, I.C. Rea, D. Real, G. Riccobene, J. Robinson, A. Romanov, A. Ć aina, F. Salesa Greus, D.F.E. Samtleben, A. SĂĄnchez Losa, S. Sanfilippo, M. Sanguineti, C. Santonastaso, D. Santonocito, P. Sapienza, J. Schnabel, J. Schumann, H.M. Schutte, J. Seneca, N. Sennan, B. Setter, I. Sgura, R. Shanidze, A. Sharma, Y. Shitov, F. Ć imkovic, A. Simonelli, A. Sinopoulou, M.V. Smirnov, B. Spisso, M. Spurio, D. Stavropoulos, I. Ć tekl, M. Taiuti, R. Tangorra-Cascione, Y. Tayalati, H. Thiersen, I. Tosta e Melo, E. Tragia, B. TrocmĂ©, V. Tsourapis, A. Tudorache, E. Tzamariudaki, A. Ukleja, A. Vacheret, A. Valer Melchor, V. Valsecchi, V. Van Elewyck, G. Vannoye, G. Vasileiadis, F. Vazquez de Sola, A. Veutro, S. Viola, D. Vivolo, J. Wilms, E. de Wolf, H. Yepes-Ramirez, I. Yvon, G. Zarpapis, S. Zavatarelli, A. Zegarelli, D. Zito, J.D. Zornoza, J. ZĂșñiga, N. Zywucka and The KM3NeT collaborationPostprint (published version
Embedded software of the KM3NeT central logic board
The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes.The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission europĂ©enne (FEDER fund and Marie Curie Program), Labex UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ăle-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-22-13708), Georgia; The General Secretariat of Research and Innovation (GSRI), Greece Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'UniversitĂ e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for Economic and Social Development, Kuwait; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2021/41/N/ST2/01177); The grant âAstroCeNT: Particle Astrophysics Science and Technology Centreâ, carried out within the International Research Agendas programme of the Foundation for Polish Science financed by the European Union under the European Regional Development Fund; National Authority for Scientific Research (ANCS), Romania; Grants PID2021-124591NB-C41, -C42, -C43 funded by MCIN/AEI/ 10.13039/501100011033 and, as appropriate, by âERDF A way of making Europeâ, by the âEuropean Unionâ or by the âEuropean Union NextGenerationEU/PRTRâ, Programa de Planes Complementarios I+D+I (refs. ASFAE/2022/023, ASFAE/2022/014), Programa Prometeo (PROMETEO/2020/019) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049. /2021/23) of the Generalitat Valenciana, Junta de AndalucĂa (ref. SOMM17/6104/UGR, P18-FR-5057), EU: MSC program (ref. 101025085), Programa MarĂa Zambrano (Spanish Ministry of Universities, funded by the European Union, NextGenerationEU), Spain; The European Union's Horizon 2020 Research and Innovation Programme (ChETEC-INFRA - Project no. 101008324).Peer ReviewedArticle signat per 266 autors/es:S. Aiello, A. Albert, S. Alves Garre, Z. Aly, A. Ambrosone, F. Ameli, M. Andre, E. Androutsou, M. Anghinolfi, M. Anguita, L. Aphecetche, M. Ardid, S. Ardid, H. Atmani, J. Aublin, C. Bagatelas, L. Bailly-Salins, Z. BardaÄovĂĄ, B. Baret, S. Basegmez du Pree, Y. Becherini, M. Bendahman, F. Benfenati , M. Benhassi, D.M. Benoit, E. Berbee, V. Bertin, V. van Beveren, S. Biagi, M. Boettcher, J. Boumaaza, M. Bouta, M. Bouwhuis, C. Bozza, R.M. Bozza, H. BrĂąnzaĆ, F. Bretaudeau, R. Bruijn, J. Brunner, R. Bruno, E. Buis, R. Buompane, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, V. Carretero, T. Cartraud, P. Castaldi, V. Cecchini, S. Celli, L. Cerisy, M. Chabab, M. Chadolias, A. Chen, S. Cherubini , T. Chiarusi, M. Circella, R. Cocimano, J.A.B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A. Cruz, G. Cuttone, R. Dallier, Y. Darras, A. De Benedittis, B. De Martino, V. Decoene, R. Del Burgo, L.S. Di Mauro, I. Di Palma, A.F. DĂaz, D. Diego-Tortosa, C. Distefano, A. Domi, C. Donzaud, D. Dornic, M. Dörr, E. Drakopoulou, D. Drouhin, R. DvornickĂœ, T. Eberl, E. EckerovĂĄ, A. Eddymaoui, T. van Eeden, M. Eff, D. van Eijk, I. El Bojaddaini, S. El Hedri, A. Enzenhöfer, G. Ferrara, M.D. FilipoviÄ, F. Filippini, L.A. Fusco, O. Gabella, J. Gabriel, S. Gagliardini, T. Gal, J. GarcĂa MĂ©ndez, A. Garcia Soto, C. Gatius Oliver, N. GeiĂelbrecht, H. Ghaddari, L. Gialanella, B.K. Gibson, E. Giorgio, A. Girardi, I. Goos, D. Goupilliere, S.R. Gozzini, R. Gracia, K. Graf, C. Guidi, B. Guillon, M. GutiĂ©rrez , H. van Haren, A. Heijboer, A. Hekalo, L. Hennig, J.J. HernĂĄndez-Rey, F. Huang, W. Idrissi Ibnsalih, G. Illuminati, C.W. James, P. Jansweijer, M. de Jong, P. de Jong, B.J. Jung, P. KalaczyĆski, O. Kalekin, U.F. Katz, N.R. Khan Chowdhury, A. Khatun, G. Kistauri, C. Kopper, A. Kouchner, V. Kulikovskiy, R. Kvatadze, M. Labalme, R. Lahmann, G. Larosa, C. Lastoria, A. Lazo, S. Le Stum, G. Lehaut, E. Leonora, N. Lessing, G. Levi, M. Lindsey Clark, F. Longhitano, J. Majumdar, L. Malerba, F. Mamedov, J. MaĆczak, A. Manfreda, M. Marconi, A. Margiotta, A. Marinelli, C. Markou, L. Martin, J.A. MartĂnez-Mora, F. Marzaioli, M. Mastrodicasa, S. Mastroianni, S. MiccichĂš, G. Miele, P. Migliozzi, E. Migneco, S. Minutoli, M.L. Mitsou, C.M. Mollo, L. Morales-Gallegos, C. Morley-Wong, A. Mosbrugger, A. Moussa, I. Mozun Mateo, R. Muller, M.R. Musone, M. Musumeci, L. Nauta, S. Navas, A. Nayerhoda, C.A. Nicolau, B. Nkosi, B. Ă Fearraigh, V. Oliviero, A. Orlando, E. Oukacha, J. Palacios GonzĂĄlez, G. Papalashvili, E.J. Pastor Gomez, A.M. PÄun, G.E. PÄvÄlaĆ, S. Peña MartĂnez, M. Perrin-Terrin, J. Perronnel, V. Pestel, R. Pestes, P. Piattelli, C. PoirĂš, V. Popa, T. Pradier, S. Pulvirenti, G. QuĂ©mĂ©ner, C. Quiroz, U. Rahaman, N. Randazzo, S. Razzaque, I.C. Rea, D. Real, S. Reck, G. Riccobene, J. Robinson y, A. Romanov aq j, A. Saina c, F. Salesa Greus c, D.F.E. Samtleben at s, A. SĂĄnchez Losa c ak, M. Sanguineti aq j, C. Santonastaso bb e, D. Santonocito x, P. Sapienza x, Y. Scarpetta J. Schnabel, M.F. Schneider, J. Schumann, H.M. Schutte, J. Seneca, B. Setter, I. Sgura, R. Shanidze, Y. Shitov, F. Ć imkovic, A. Simonelli, A. Sinopoulou, M.V. Smirnov, B. Spisso, M. Spurio, D. Stavropoulos, I. Ć tekl, M. Taiuti, Y. Tayalati, H. Tedjditi, H. Thiersen I. Tosta e Melo, B. Trocme, S. Tsagkli, V. Tsourapis, E. Tzamariudaki, A. Vacheret, V. Valsecchi, V. Van Elewyck, G. Vannoye, G. Vasileiadis, F. Vazquez de Sola, C. Verilhac, A. Veutro, S. Viola, D. Vivolo, H. Warnhofer, J. Wilms, E. de Wolf, H. Yepes-Ramirez, G. Zarpapis, S. Zavatarelli, A. Zegarelli, D. Zito, J.D. Zornoza, J. ZĂșñiga, N. ZywuckaPostprint (published version
Process of Facilitated Extraction of Vanadium Ions through Supported Liquid Membranes: Parameters and Mechanism
To conduct experiments related to the facilitated extraction phenomenon of vanadium ions (VO2+), three supported liquid membranes (SLMs) were prepared, each containing 0.01âM of methyl cholate (MC), resorcinarene (RESO), or trioctylamine (TOA) as extractive agents. Kinetic and thermodynamic models were developed, based on the interaction of the substrate (VO2+) with the extractive agent T and the diffusion of the formed entity (TS) through the membrane. The experimental results verify the models, and to determine, macroscopic parameters, permeabilities (P) and initial fluxes (J0), and microscopic parameters, association constants (Kass) and apparent diffusion coefficients (Dâ) related to formed entities (TS) and their diffusion through the membrane organic phase. The experimental results indicate that the mechanism on the migration of the VO2+ ions through the membrane organic phase is based on the successive jumps of substrate, from one site to another of the extractive agent. To explain these results and understand the mechanism, we studied influence of temperature factor, and we determined activation parameters (Ea, ÎHâ , and ÎSâ ). The results show that this extraction phenomenon is governed by a structural term. Therefore, the membrane performance changes according to nature and structure of the association site presented by each of extractive agents
Interpreting Reactor Antineutrino Anomalies with STEREO data
Anomalies in past neutrino measurements have led to the discovery that theseparticles have non-zero mass and oscillate between their three flavors whenthey propagate. In the 2010's, similar anomalies observed in the antineutrinospectra emitted by nuclear reactors have triggered the hypothesis of theexistence of a supplementary neutrino state that would be sterile i.e. notinteracting via the weak interaction. The STEREO experiment was designed tostudy this scientific case that would potentially extend the Standard Model ofParticle Physics. Here we present a complete study based on our full set ofdata with significantly improved sensitivity. Installed at the ILL (InstitutLaue Langevin) research reactor, STEREO has accurately measured theantineutrino energy spectrum associated to the fission of 235U. Thismeasurement confirms the anomalies whereas, thanks to the segmentation of theSTEREO detector and its very short mean distance to the core (10~m), the samedata reject the hypothesis of a light sterile neutrino. Such a directmeasurement of the antineutrino energy spectrum suggests instead that biases inthe nuclear experimental data used for the predictions are at the origin of theanomalies. Our result supports the neutrino content of the Standard Model andestablishes a new reference for the 235U antineutrino energy spectrum. Weanticipate that this result will allow to progress towards finer tests of thefundamental properties of neutrinos but also to benchmark models and nucleardata of interest for reactor physics and for observations of astrophysical orgeo-neutrinos.<br
- âŠ