9 research outputs found

    Morphological variability of the Aspius aspius taeniatus (Eichwald, 1831) in the Southern Caspian Sea Basin

    Get PDF
    Traditional morphometric measurements and meristic counts were used to investigate the hypothesis of population fragmentation of Mash mahi, Aspius aspius taeniatus (Eichwald, 1831) among two fishing areas in southern Caspian Sea basin (Tonekabon:32 specimens and Sari:34 specimens ). Univariate analysis of variance showed significant differences between the means of the two groups for 12 out of 26 standardized morphometric measurement and three out of nine meristic counts. In discriminant function analysis (DFA), the proportion of individuals correctly classified into their original groups was 82.1% and 61.2% for morphometric and meristic characteristics, respectively. Clustering based on Euclidean distances among groups of centroids using an UPGMA and also principal component analysis’ results (PCA) for morphometric and meristic data indicated that two samples of Mash mahi were distinct from each other in these regions, while there were a relatively high degree of overlap between two locations

    A multivariate morphometric investigation to delineate stock structure of gangetic whiting, Sillaginopsis panijus (Teleostei: Sillaginidae)

    Get PDF
    This study was conducted to delineate the stock structure of Sillaginopsis paniijus based on morphometric characters of the species. A total of 194 specimens were collected from the Meghna, Tentulia and Baleswar rivers located in the southern coastal zone of Bangladesh. Data were subjected to univariate ANOVA, multivariate ANOVA, discriminate function analysis (DFA), and principal component analysis. Mean variations of ten morphometric characters; HD, HBD, LBD, PsOL, ED, SnL, SPrDL, HAF, LSDB and LPB showed significant differences (p < 0.05) among 27 morphometric traits that were selected for the study. In DFA, the overall assignments of individuals into their correctly classified original groups were 71.1 and 70.6 % for male and female, respectively. A scatter plot of the first two discriminant functions was used to visually depict the discrimination among the populations. The results showed different stocks of S. panijus in the rivers of Baleswar, Tentulia and Meghna in southwest coast of Bangladesh

    Multi-objective rehabilitation of urban drainage systems under uncertainties

    No full text
    The definitive peer-reviewed and edited version of this article is published in the Journal of Hydroinformatics 16 (5) 2014 and is available at www.iwapublishing.com.Urban drainage systems are subject to many drivers which can affect their performance and functioning. Typically, climate change, urbanisation and population growth along with aging of pipes may lead to uncontrollable discharges and surface flooding. So far, many researchers and practitioners concerned with optimal design and rehabilitation of urban drainage systems have applied deterministic approaches which treat input parameters as fixed values. However, due to the variety of uncertainties associated with input parameters, such approaches can easily lead to either over-dimensioning or under-dimensioning of drainage networks. The present paper deals with such issues and describes a methodology that has been developed to accommodate the effects of uncertainties into the design and rehabilitation of drainage systems. The paper presents a methodology that can take into account uncertainties from climate change, urbanisation, population growth and aging of pipes. The methodology is applied and tested on a case study of Dhaka, Bangladesh. The urban drainage network optimisation problem is posed as a multi-objective problem for which the objective functions are formulated to minimise damage costs and intervention costs. Two approaches were evaluated and the results show that both approaches are capable of identifying optimal Pareto fronts

    Environmental pollution and toxic substances: cellular apoptosis as a key parameter in a sensible model like fish

    Full text link
    WOS: 000449240800014PubMed ID: 30273782The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.Sari University of Agricultural Sciences and Natural ResourcesWe would like to express a special thanks to Prof. Willem B. Van Muiswinkel for critical comments on the manuscript. We are indebted to Dr. B. Di Giacomo for help in realizing the figure in this manuscript. H. AnviriFar has been supported by a PhD student grant from Sari University of Agricultural Sciences and Natural Resources

    Apoptosis in fish: environmental factors and programmed cell death

    No full text

    Research progress on gut health of farmers teleost fish: a viewpoint concerning the intestinal mucosal barrier and the impact of its damage

    No full text
    corecore