110 research outputs found

    On local invariants of pure three-qubit states

    Get PDF
    We study invariants of three-qubit states under local unitary transformations, i.e. functions on the space of entanglement types, which is known to have dimension 6. We show that there is no set of six independent polynomial invariants of degree less than or equal to 6, and find such a set with maximum degree 8. We describe an intrinsic definition of a canonical state on each orbit, and discuss the (non-polynomial) invariants associated with it.Comment: LateX, 13 pages. Minor typoes corrected. Published versio

    Classification of n-qubit states with minimum orbit dimension

    Full text link
    The group of local unitary transformations acts on the space of n-qubit pure states, decomposing it into orbits. In a previous paper we proved that a product of singlet states (together with an unentangled qubit for a system with an odd number of qubits) achieves the smallest possible orbit dimension, equal to 3n/2 for n even and (3n + 1)/2 for n odd, where n is the number of qubits. In this paper we show that any state with minimum orbit dimension must be of this form, and furthermore, such states are classified up to local unitary equivalence by the sets of pairs of qubits entangled in singlets.Comment: 15 pages, latex, revision 2, conclusion added, some proofs shortene

    Classification of mixed three-qubit states

    Get PDF
    We introduce a classification of mixed three-qubit states, in which we define the classes of separable, biseparable, W- and GHZ-states. These classes are successively embedded into each other. We show that contrary to pure W-type states, the mixed W-class is not of measure zero. We construct witness operators that detect the class of a mixed state. We discuss the conjecture that all entangled states with positive partial transpose (PPTES) belong to the W-class. Finally, we present a new family of PPTES "edge" states with maximal ranks.Comment: 4 pages, 1 figur

    Quantum random walks with decoherent coins

    Get PDF
    The quantum random walk has been much studied recently, largely due to its highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum walk on the line: the presence of decoherence in the quantum ``coin'' which drives the walk. We find exact analytical expressions for the time dependence of the first two moments of position, and show that in the long-time limit the variance grows linearly with time, unlike the unitary walk. We compare this to the results of direct numerical simulation, and see how the form of the position distribution changes from the unitary to the usual classical result as we increase the strength of the decoherence.Comment: Minor revisions, especially in introduction. Published versio

    Evanescence in Coined Quantum Walks

    Full text link
    In this paper we complete the analysis begun by two of the authors in a previous work on the discrete quantum walk on the line [J. Phys. A 36:8775-8795 (2003) quant-ph/0303105 ]. We obtain uniformly convergent asymptotics for the "exponential decay'' regions at the leading edges of the main peaks in the Schr{\"o}dinger (or wave-mechanics) picture. This calculation required us to generalise the method of stationary phase and we describe this extension in some detail, including self-contained proofs of all the technical lemmas required. We also rigorously establish the exact Feynman equivalence between the path-integral and wave-mechanics representations for this system using some techniques from the theory of special functions. Taken together with the previous work, we can now prove every theorem by both routes.Comment: 32 pages AMS LaTeX, 5 figures in .eps format. Rewritten in response to referee comments, including some additional references. v3: typos fixed in equations (131), (133) and (134). v5: published versio

    The meeting problem in the quantum random walk

    Full text link
    We study the motion of two non-interacting quantum particles performing a random walk on a line and analyze the probability that the two particles are detected at a particular position after a certain number of steps (meeting problem). The results are compared to the corresponding classical problem and differences are pointed out. Analytic formulas for the meeting probability and its asymptotic behavior are derived. The decay of the meeting probability for distinguishable particles is faster then in the classical case, but not quadratically faster. Entangled initial states and the bosonic or fermionic nature of the walkers are considered

    Local symmetry properties of pure 3-qubit states

    Get PDF
    Entanglement types of pure states of 3 qubits are classified by means of their stabilisers in the group of local unitary operations. It is shown that the stabiliser is generically discrete, and that a larger stabiliser indicates a stationary value for some local invariant. We describe all the exceptional states with enlarged stabilisers.Comment: 32 pages, 5 encapsulated PostScript files for 3 figures. Published version, with minor correction
    • …
    corecore