234 research outputs found

    Smeared phase transitions in percolation on real complex networks

    Full text link
    Percolation on complex networks is used both as a model for dynamics on networks, such as network robustness or epidemic spreading, and as a benchmark for our models of networks, where our ability to predict percolation measures our ability to describe the networks themselves. In many applications, correctly identifying the phase transition of percolation on real-world networks is of critical importance. Unfortunately, this phase transition is obfuscated by the finite size of real systems, making it hard to distinguish finite size effects from the inaccuracy of a given approach that fails to capture important structural features. Here, we borrow the perspective of smeared phase transitions and argue that many observed discrepancies are due to the complex structure of real networks rather than to finite size effects only. In fact, several real networks often used as benchmarks feature a smeared phase transition where inhomogeneities in the topological distribution of the order parameter do not vanish in the thermodynamic limit. We find that these smeared transitions are sometimes better described as sequential phase transitions within correlated subsystems. Our results shed light not only on the nature of the percolation transition in complex systems, but also provide two important insights on the numerical and analytical tools we use to study them. First, we propose a measure of local susceptibility to better detect both clean and smeared phase transitions by looking at the topological variability of the order parameter. Second, we highlight a shortcoming in state-of-the-art analytical approaches such as message passing, which can detect smeared transitions but not characterize their nature.Comment: 10 pages, 8 figure

    High-Resolution Road Vehicle Collision Prediction for the City of Montreal

    Full text link
    Road accidents are an important issue of our modern societies, responsible for millions of deaths and injuries every year in the world. In Quebec only, in 2018, road accidents are responsible for 359 deaths and 33 thousands of injuries. In this paper, we show how one can leverage open datasets of a city like Montreal, Canada, to create high-resolution accident prediction models, using big data analytics. Compared to other studies in road accident prediction, we have a much higher prediction resolution, i.e., our models predict the occurrence of an accident within an hour, on road segments defined by intersections. Such models could be used in the context of road accident prevention, but also to identify key factors that can lead to a road accident, and consequently, help elaborate new policies. We tested various machine learning methods to deal with the severe class imbalance inherent to accident prediction problems. In particular, we implemented the Balanced Random Forest algorithm, a variant of the Random Forest machine learning algorithm in Apache Spark. Interestingly, we found that in our case, Balanced Random Forest does not perform significantly better than Random Forest. Experimental results show that 85% of road vehicle collisions are detected by our model with a false positive rate of 13%. The examples identified as positive are likely to correspond to high-risk situations. In addition, we identify the most important predictors of vehicle collisions for the area of Montreal: the count of accidents on the same road segment during previous years, the temperature, the day of the year, the hour and the visibility

    Modeling the dynamical interaction between epidemics on overlay networks

    Full text link
    Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same host population and may interact dynamically with each other. We present a general model where two viral agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting the same set of nodes. Exploiting a correspondence between the propagation dynamics and a dynamical process performing progressive network generation, we develop an analytic approach that accurately captures the dynamical interaction between epidemics on overlay networks. The formalism allows for overlay networks with arbitrary joint degree distribution and overlap. To illustrate the versatility of our approach, we consider a hypothetical delayed intervention scenario in which an immunizing agent is disseminated in a host population to hinder the propagation of an undesirable agent (e.g. the spread of preventive information in the context of an emerging infectious disease).Comment: Accepted for publication in Phys. Rev. E. 15 pages, 7 figure

    Growing networks of overlapping communities with internal structure

    Get PDF
    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.Comment: 14 pages, 8 figures, 2 table

    Percolation on random networks with arbitrary k-core structure

    Get PDF
    The k-core decomposition of a network has thus far mainly served as a powerful tool for the empirical study of complex networks. We now propose its explicit integration in a theoretical model. We introduce a Hard-core Random Network model that generates maximally random networks with arbitrary degree distribution and arbitrary k-core structure. We then solve exactly the bond percolation problem on the HRN model and produce fast and precise analytical estimates for the corresponding real networks. Extensive comparison with selected databases reveals that our approach performs better than existing models, while requiring less input information.Comment: 9 pages, 5 figure

    Complex networks as an emerging property of hierarchical preferential attachment

    Get PDF
    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.Comment: 12 pages, 7 figure

    Strategic tradeoffs in competitor dynamics on adaptive networks

    Get PDF
    Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.Comment: 20 pages (11 pages for the main text and 9 pages of supplementary material

    Adaptive networks: coevolution of disease and topology

    Get PDF
    Adaptive networks have been recently introduced in the context of disease propagation on complex networks. They account for the mutual interaction between the network topology and the states of the nodes. Until now, existing models have been analyzed using low-complexity analytic formalisms, revealing nevertheless some novel dynamical features. However, current methods have failed to reproduce with accuracy the simultaneous time evolution of the disease and the underlying network topology. In the framework of the adaptive SIS model of Gross et al. [Phys. Rev. Lett. 96, 208701 (2006)], we introduce an improved compartmental formalism able to handle this coevolutionary task successfully. With this approach, we analyze the interplay and outcomes of both dynamical elements, process and structure, on adaptive networks featuring different degree distributions at the initial stage.Comment: 11 pages, 8 figures, 1 appendix. To be published in Physical Review
    corecore