480 research outputs found

    Cortical sensitivity to natural scene structure

    Get PDF
    Natural scenes are inherently structured, with meaningful objects appearing in predictable locations. Human vision is tuned to this structure: When scene structure is purposefully jumbled, perception is strongly impaired. Here, we tested how such perceptual effects are reflected in neural sensitivity to scene structure. During separate fMRI and EEG experiments, participants passively viewed scenes whose spatial structure (i.e., the position of scene parts) and categorical structure (i.e., the content of scene parts) could be intact or jumbled. Using multivariate decoding, we show that spatial (but not categorical) scene structure profoundly impacts on cortical processing: Scene-selective responses in occipital and parahippocampal cortices (fMRI) and after 255 ms (EEG) accurately differentiated between spatially intact and jumbled scenes. Importantly, this differentiation was more pronounced for upright than for inverted scenes, indicating genuine sensitivity to spatial structure rather than sensitivity to low-level attributes. Our findings suggest that visual scene analysis is tightly linked to the spatial structure of our natural environments. This link between cortical processing and scene structure may be crucial for rapidly parsing naturalistic visual inputs

    Urea cycle disorders in Argentine patients: clinical presentation, biochemical and genetic findings

    Get PDF
    Urea cycle defects; Argininosuccinate synthetase deficiency; HyperammonemiaDefectos del ciclo de la urea; Deficiencia de argininosuccinato sintetasa; HiperamonemiaDefectes del cicle de la urea; Dèficit d’argininosuccinat sintetasa; HiperammonèmiaBACKGROUND: The incidence, prevalence, and molecular epidemiology of urea cycle disorders (UCDs) in Argentina remain underexplored. The present study is the first to thoroughly assess the clinical and molecular profiles of UCD patients examined at a single reference center in Argentina. RESULTS: Forty-nine UCD cases were collected. About half (26/49, 53%) manifested neonatally with classical presentation and had a high mortality (25/26, 96%). Ornithine transcarbamylase deficiency (OTCD) was the most common UCD (26 patients). Argininosuccinate synthetase deficiency (ASSD) was detected in 19 cases, while argininosuccinate lyase deficiency (ASLD) was diagnosed in 4 cases. Molecular genetic analysis revealed 8 private OTC mutations and two large deletion/duplication events in the OTC gene. Most mutations in the ASS1 and ASL genes were recurrent missense changes, and four alterations were novel. The clinical outcome of our UCD cohort was poor, with an overall mortality of 57% (28/49 cases), and a 28% (6/21) disability rate among the survivors. CONCLUSIONS: Most patients in our case series showed severe neonatal onset, with high morbidity/mortality. We detected in total 19 mutations, most of them recurrent and of high frequency worldwide. Noteworthy, we highlight the presence of a geographic cluster with high prevalence of a point mutation in the ASS1 gene. This study suggests that these disorders may be more frequent than commonly assumed, and stresses the need for increased awareness amongst health professionals and greater availability of diagnostic tools for accurate identification, early diagnosis, and timely treatment.This study was supported by grants from the Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Work on urea cycle disorders in Zurich is supported by the Swiss National Science Foundation (grant no SNF 310030_153196 to JH)

    oMEGACat I: MUSE spectroscopy of 300,000 stars within the half-light radius of ω\omega Centauri

    Full text link
    Omega Centauri (ω\omega Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic datasets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω\omega Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic dataset combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than two magnitudes below the main sequence turn-off. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main sequence stars (18 mag <magF625W<\rm < mag_{F625W}<22 mag) and red giant branch stars (16 mag <magF625W<<\rm mag_{F625W}<10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic dataset will enable future studies that will transform our understanding of ω\omega Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail.Comment: 27 pages, 18 figures, 3 tables, accepted for publication in ApJ, the catalog will be available in the online material of the published articl

    Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy

    Get PDF
    To accomplish a diagnosis in patients with a rare unclassified disorder is difficult. In this study, we used magnetic resonance imaging pattern recognition analysis to identify patients with the same novel heritable disorder. Whole-exome sequencing was performed to discover the mutated gene. We identified seven patients sharing a previously undescribed magnetic resonance imaging pattern, characterized by initial swelling with T2 hyperintensity of the basal nuclei, thalami, cerebral white matter and cortex, pons and midbrain, followed by rarefaction or cystic degeneration of the white matter and, eventually, by progressive cerebral, cerebellar and brainstem atrophy. All patients developed a severe encephalopathy with rapid deterioration of neurological functions a few weeks after birth, followed by respiratory failure and death. Lactate was elevated in body fluids and on magnetic resonance spectroscopy in most patients. Whole-exome sequencing in a single patient revealed two predicted pathogenic, heterozygous missense mutations in the SLC19A3 gene, encoding the second thiamine transporter. Additional predicted pathogenic mutations and deletions were detected by Sanger sequencing in all six other patients. Pathology of brain tissue of two patients demonstrated severe cerebral atrophy and microscopic brain lesions similar to Leigh's syndrome. Although the localization of SLC19A3 expression in brain was similar in the two investigated patients compared to age-matched control subjects, the intensity of the immunoreactivity was increased. Previously published patients with SLC19A3 mutations have a milder clinical phenotype, no laboratory evidence of mitochondrial dysfunction and more limited lesions on magnetic resonance imaging. In some, cerebral atrophy has been reported. The identification of this new, severe, lethal phenotype characterized by subtotal brain degeneration broadens the phenotypic spectrum of SLC19A3 mutations. Recognition of the associated magnetic resonance imaging pattern allows a fast diagnosis in affected infant

    Cross-sectional observational study of 208 patients with non-classical urea cycle disorders.

    Get PDF
    Urea cycle disorders (UCDs) are inherited disorders of ammonia detoxification often regarded as mainly of relevance to pediatricians. Based on an increasing number of case studies it has become obvious that a significant number of UCD patients are affected by their disease in a non-classical way: presenting outside the newborn period, following a mild course, presenting with unusual clinical features, or asymptomatic patients with only biochemical signs of a UCD. These patients are surviving into adolescence and adulthood, rendering this group of diseases clinically relevant to adult physicians as well as pediatricians. In preparation for an international workshop we collected data on all patients with non-classical UCDs treated by the participants in 20 European metabolic centres. Information was collected on a cohort of 208 patients 50% of which were ≥ 16 years old. The largest subgroup (121 patients) had X-linked ornithine transcarbamylase deficiency (OTCD) of whom 83 were female and 29% of these were asymptomatic. In index patients, there was a mean delay from first symptoms to diagnosis of 1.6 years. Cognitive impairment was present in 36% of all patients including female OTCD patients (in 31%) and those 41 patients identified presymptomatically following positive newborn screening (in 12%). In conclusion, UCD patients with non-classical clinical presentations require the interest and care of adult physicians and have a high risk of neurological complications. To improve the outcome of UCDs, a greater awareness by health professionals of the importance of hyperammonemia and UCDs, and ultimately avoidance of the still long delay to correctly diagnose the patients, is crucial

    Tigecycline in critically ill patients on continuous renal replacement therapy: a population pharmacokinetic study

    Get PDF
    Background: Tigecycline is a vital antibiotic treatment option for infections caused by multiresistant bacteria in the intensive care unit (ICU). Acute kidney injury (AKI) is a common complication in the ICU requiring continuous renal replacement therapy (CRRT), but pharmacokinetic data for tigecycline in patients receiving CRRT are lacking. Methods: Eleven patients mainly with intra-abdominal infections receiving either continuous veno-venous hemodialysis (CVVHD, n = 8) or hemodiafiltration (CVVHDF, n = 3) were enrolled, and plasma as well as effluent samples were collected according to a rich sampling schedule. Total and free tigecycline was determined by ultrafiltration and high-performance liquid chromatography (HPLC)-UV. Population pharmacokinetic modeling using NONMEM® 7.4 was used to determine the pharmacokinetic parameters as well as the clearance of CVVHD and CVVHDF. Pharmacokinetic/pharmacodynamic target attainment analyses were performed to explore the potential need for dose adjustments of tigecycline in CRRT. Results: A two-compartment population pharmacokinetic (PK) model was suitable to simultaneously describe the plasma PK and effluent measurements of tigecycline. Tigecycline dialysability was high, as indicated by the high mean saturation coefficients of 0.79 and 0.90 for CVVHD and CVVHDF, respectively, and in range of the concentration-dependent unbound fraction of tigecycline (45–94%). However, the contribution of CRRT to tigecycline clearance (CL) was only moderate (CLCVVHD: 1.69 L/h, CLCVVHDF: 2.71 L/h) in comparison with CLbody (physiological part of the total clearance) of 18.3 L/h. Bilirubin was identified as a covariate on CLbody in our collective, reducing the observed interindividual variability on CLbody from 58.6% to 43.6%. The probability of target attainment under CRRT for abdominal infections was ≥ 0.88 for minimal inhibitory concentration (MIC) values ≤ 0.5 mg/L and similar to patients without AKI. Conclusions: Despite high dialysability, dialysis clearance displayed only a minor contribution to tigecycline elimination, being in the range of renal elimination in patients without AKI. No dose adjustment of tigecycline seems necessary in CRRT. Trial registration: EudraCT, 2012–005617-39. Registered on 7 August 2013

    EEG ERP preregistration template

    Get PDF
    This preregistration template guides researchers who wish to preregister their EEG projects, more specifically studies investigating event-related potentials (ERPs) in the sensor space

    O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis

    Get PDF
    Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia&nbsp;in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc&nbsp;from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases

    Genetic basis of hyperlysinemia

    Get PDF
    Background: Hyperlysinemia is an autosomal recessive inborn error of L-lysine degradation. To date only one causal mutation in the AASS gene encoding aminoadipic semialdehyde synthase has been reported. We aimed to better define the genetic basis of hyperlysinemia. Methods. We collected the clinical, biochemical and molecular data in a cohort of 8 hyperlysinemia patients with distinct neurological features. Results: We found novel causal mutations in AASS in all affected individuals, including 4 missense mutations, 2 deletions and 1 duplication. In two patients originating from one family, the hyperlysinemia was caused by a contiguous gene deletion syndrome affecting AASS and PTPRZ1. Conclusions: Hyperlysinemia is caused by mutations in AASS. As hyperlysinemia is generally considered a benign metabolic variant, the more severe neurological disease course in two patients with a contiguous deletion syndrome may be explained by the additional loss of PTPRZ1. Our findings illustrate the importance of detailed biochemical and genetic studies in any hyperlysinemia patient
    corecore