326 research outputs found

    Multi-Signal Reconstruction Using Masked Autoencoder From EEG During Polysomnography

    Full text link
    Polysomnography (PSG) is an indispensable diagnostic tool in sleep medicine, essential for identifying various sleep disorders. By capturing physiological signals, including EEG, EOG, EMG, and cardiorespiratory metrics, PSG presents a patient's sleep architecture. However, its dependency on complex equipment and expertise confines its use to specialized clinical settings. Addressing these limitations, our study aims to perform PSG by developing a system that requires only a single EEG measurement. We propose a novel system capable of reconstructing multi-signal PSG from a single-channel EEG based on a masked autoencoder. The masked autoencoder was trained and evaluated using the Sleep-EDF-20 dataset, with mean squared error as the metric for assessing the similarity between original and reconstructed signals. The model demonstrated proficiency in reconstructing multi-signal data. Our results present promise for the development of more accessible and long-term sleep monitoring systems. This suggests the expansion of PSG's applicability, enabling its use beyond the confines of clinics.Comment: Proc. 12th IEEE International Winter Conference on Brain-Computer Interfac

    Impact of Nap on Performance in Different Working Memory Tasks Using EEG

    Full text link
    Electroencephalography (EEG) has been widely used to study the relationship between naps and working memory, yet the effects of naps on distinct working memory tasks remain unclear. Here, participants performed word-pair and visuospatial working memory tasks pre- and post-nap sessions. We found marked differences in accuracy and reaction time between tasks performed pre- and post-nap. In order to identify the impact of naps on performance in each working memory task, we employed clustering to classify participants as high- or low-performers. Analysis of sleep architecture revealed significant variations in sleep onset latency and rapid eye movement (REM) proportion. In addition, the two groups exhibited prominent differences, especially in the delta power of the Non-REM 3 stage linked to memory. Our results emphasize the interplay between nap-related neural activity and working memory, underlining specific EEG markers associated with cognitive performance.Comment: Submitted to 2024 12th IEEE International Winter Conference on Brain-Computer Interfac

    Relationship Between Mood, Sleepiness, and EEG Functional Connectivity by 40 Hz Monaural Beats

    Full text link
    The monaural beat is known that it can modulate brain and personal states. However, which changes in brain waves are related to changes in state is still unclear. Therefore, we aimed to investigate the effects of monaural beats and find the relationship between them. Ten participants took part in five separate random sessions, which included a baseline session and four sessions with monaural beats stimulation: one audible session and three inaudible sessions. Electroencephalogram (EEG) were recorded and participants completed pre- and post-stimulation questionnaires assessing mood and sleepiness. As a result, audible session led to increased arousal and positive mood compared to other conditions. From the neurophysiological analysis, statistical differences in frontal-central, central-central, and central-parietal connectivity were observed only in the audible session. Furthermore, a significant correlation was identified between sleepiness and EEG power in the temporal and occipital regions. These results suggested a more detailed correlation for stimulation to change its personal state. These findings have implications for applications in areas such as cognitive enhancement, mood regulation, and sleep management

    Neurophysiological Response Based on Auditory Sense for Brain Modulation Using Monaural Beat

    Full text link
    Brain modulation is a modification process of brain activity through external stimulations. However, which condition can induce the activation is still unclear. Therefore, we aimed to identify brain activation conditions using 40 Hz monaural beat (MB). Under this stimulation, auditory sense status which is determined by frequency and power range is the condition to consider. Hence, we designed five sessions to compare; no stimulation, audible (AB), inaudible in frequency, inaudible in power, and inaudible in frequency and power. Ten healthy participants underwent each stimulation session for ten minutes with electroencephalogram (EEG) recording. For analysis, we calculated the power spectral density (PSD) of EEG for each session and compared them in frequency, time, and five brain regions. As a result, we observed the prominent power peak at 40 Hz in only AB. The induced EEG amplitude increase started at one minute and increased until the end of the session. These results of AB had significant differences in frontal, central, temporal, parietal, and occipital regions compared to other stimulations. From the statistical analysis, the PSD of the right temporal region was significantly higher than the left. We figure out the role that the auditory sense is important to lead brain activation. These findings help to understand the neurophysiological principle and effects of auditory stimulation.Comment: Accepted to EMBC 202

    Bilateral Ageusia in a Patient with a Left Ventroposteromedial Thalamic Infarct: Cortical Localization of Taste Sensation by Statistical Parametric Mapping Analysis of PET Images

    Get PDF
    Unilateral taste loss is usually observed on the side contralateral to a thalamic infarction, despite gustatory function being represented bilaterally. We report a rare case of bilateral taste loss in a patient with an acute left unilateral thalamic infarction, with unilateral left insular hypometabolism demonstrated by statistical parametric map analysis of PET images. Our observations suggest that the left insular cortex and left ventroposteromedial thalamic nuclei are critical to bilateral gustatory sensation

    Selective Regional Loss of Cortical Synapses Lacking Presynaptic Mitochondria in the 5xFAD Mouse Model

    Get PDF
    Synaptic loss in Alzheimer's disease (AD) is strongly correlated with cognitive impairment. Accumulating evidence indicates that amyloid pathology leads to synaptic degeneration and mitochondrial damage in AD. However, it remains unclear whether synapses and presynaptic mitochondria are differentially affected in various cortical regions of the AD brain at the ultrastructural level. Using serial block-face scanning electron microscopy, we assessed synaptic structures in the medial prefrontal cortex (mPFC) and primary visual cortex (V1) of the 5xFAD mouse model of AD. At 6 months of age, 5xFAD mice exhibited significantly elevated levels of amyloid deposition in layer 2/3 of the mPFC but not V1. Accordingly, three-dimensional reconstruction of synaptic connectivity revealed a significant reduction in excitatory synaptic density in layer 2 of the mPFC, but not V1, of male transgenic mice. Notably, the density of synapses lacking presynaptic mitochondria was selectively decreased in the mPFC of 5xFAD mice, with no change in the density of mitochondria-containing synapses. Further classification of spines into shape categories confirmed a preferential loss of thin spines whose presynaptic boutons were largely devoid of mitochondria in the 5xFAD mPFC. Furthermore, the number of mitochondria per bouton in spared mitochondria-containing boutons was reduced in the mPFC, but not V1, of 5xFAD mice. Collectively, these results highlight region-specific vulnerability of cortical synapses to amyloid deposition and suggest that the presence of presynaptic mitochondria may affect synaptic degeneration in AD.1

    Identification of gut dysbiosis in axial spondyloarthritis patients and improvement of experimental ankylosing spondyloarthritis by microbiome-derived butyrate with immune-modulating function

    Get PDF
    IntroductionDysbiosis is an environmental factor that affects the induction of axial spondyloarthritis (axSpA) pathogenesis. In the present study, we investigated differences in the gut microbiota of patients with axSpA and revealed an association between specific gut microbiota and their metabolites, and SpA pathogenesis.MethodUsing 16S rRNA sequencing data derived from feces samples of 33 axSpA patients and 20 healthy controls (HCs), we examined the compositions of their gut microbiomes.ResultsAs a result, axSpA patients were found to have decreased α-diversity compared to HCs, indicating that axSpA patients have less diverse microbiomes. In particular, at the species level, Bacteroides and Streptococcus were more abundant in axSpA patients than in HCs, whereas Faecalibacterium (F). prausnitzii, a butyrate-producing bacteria, was more abundant in HCs. Thus, we decided to investigate whether F. prausnitzii was associated with health conditions by inoculating F. prausnitzii (0.1, 1, and 10 μg/mL) or by administrating butyrate (0.5 mM) into CD4+ T cells derived from axSpA patients. The levels of IL-17A and IL-10 in the CD4+ T cell culture media were then measured. We also assessed osteoclast formation by administrating butyrate to the axSpA-derived peripheral blood mononuclear cells. The CD4+ IL-17A+ T cell differentiation, IL-17A levels were decreased, whereas IL-10 was increased by F. prausnitzii inoculation. Butyrate reduced CD4+ IL-17A+ T cell differentiation and osteoclastogenesis.DiscussionWe found that CD4+ IL-17A+ T cell polarization was reduced, when F. prausnitzii or butyrate were introduced into curdlan-induced SpA mice or CD4+ T cells of axSpA patient. Consistently, butyrate treatment was associated with the reduction of arthritis scores and inflammation levels in SpA mice. Taken together, we concluded that the reduced abundance of butyrate-producing microbes, particularly F. prausnitzii, may be associated with axSpA pathogenesis

    Effect of Low Frequency Cerebellar Repetitive Transcranial Magnetic Stimulation on Balance Impairment in Patients With Cerebral Infarction

    Get PDF
    Objective To investigate the effect of low frequency cerebellar repetitive transcranial magnetic stimulation (rTMS) on balance impairment in patients with cerebral infarction. Methods Thirty-two patients were randomly divided into two groups: rTMS group (n=16) and control (n=16). In the rTMS group, treatment was performed five times per week for 2 weeks (10 sessions), and in the control group, a sham coil was used with the sound and sensation of scalp similar to the rTMS coil. Patients in both groups underwent a conventional rehabilitation program. Berg Balance Scale (BBS) was used as the primary outcome measurement. Timed Up and Go test (TUG), 10-m walk test (10mWT), and Activity-specific Balance Confidence scale (ABC) were used as the secondary outcome measurement. All scales were measured at baseline (T0), after 10 sessions of rTMS (T1), and at 4 weeks after treatment completion (T2) by therapists with over 5 years of clinical experience. Results There were significant improvements between T0 and T1, and between T0 and T2, for all assessed items in the rTMS group. Whereas there were significant improvements between T0 and T1, and between T0 and T2, for the BBS and 10mWT in the control group. TUG (-4.87±5.05 vs. -0.50±2.97 seconds) and ABC score (8.10±8.33 vs. 0.16±0.97) were observed significant differences in comparison of the changes from T0 to T1 between the two group. BBS score (4.40±3.66 vs. 1.88±3.14), TUG (-4.87±4.56 vs. -0.62±2.96 seconds) and ABC score (8.22±7.70 vs. -0.09±0.86) differed significantly from T0 to T2 between the two groups. Conclusion Our findings suggest that low-frequency cerebellar rTMS is helpful for improving balance in patients with cerebral infarction, and maybe a beneficial treatment for these patients
    corecore