3,052 research outputs found
Spin and energy relaxation in germanium studied by spin-polarized direct-gap photoluminescence
Spin orientation of photoexcited carriers and their energy relaxation is
investigated in bulk Ge by studying spin-polarized recombination across the
direct band gap. The control over parameters such as doping and lattice
temperature is shown to yield high polarization degree, namely larger than 40%,
as well as a fine-tuning of the angular momentum of the emitted light with a
complete reversal between right- and left-handed circular polarization. By
combining the measurement of the optical polarization state of band-edge
luminescence and Monte Carlo simulations of carrier dynamics, we show that
these very rich and complex phenomena are the result of the electron
thermalization and cooling in the multi-valley conduction band of Ge. The
circular polarization of the direct-gap radiative recombination is indeed
affected by energy relaxation of hot electrons via the X valleys and the
Coulomb interaction with extrinsic carriers. Finally, thermal activation of
unpolarized L valley electrons accounts for the luminescence depolarization in
the high temperature regime
Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy
Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems
Optical spin injection and spin lifetime in Ge heterostructures
We demonstrate optical orientation in Ge/SiGe quantum wells and study their
spin properties. The ultrafast electron transfer from the center of the
Brillouin zone to its edge allows us to achieve high spin-polarization
efficiencies and to resolve the spin dynamics of holes and electrons. The
circular polarization degree of the direct-gap photoluminescence exceeds the
theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and
light holes states, respectively. The spin lifetime of holes at the top of the
valence band is found to be ~0.5 ps and it is governed by transitions between
heavy and light hole states. Electrons at the bottom of the conduction band, on
the other hand, have a spin lifetime that exceeds 5 ns below 150 K. Theoretical
analysis of the electrons spin relaxation indicates that phonon-induced
intervalley scattering dictates the spin lifetime.Comment: 5 pages, 3 figure
Composition profiling of inhomogeneous SiGe nanostructures by Raman spectroscopy
In this work, we present an experimental procedure to measure the composition distribution within inhomogeneous SiGe nanostructures. The method is based on the Raman spectra of the nanostructures, quantitatively analyzed through the knowledge of the scattering efficiency of SiGe as a function of composition and excitation wavelength. The accuracy of the method and its limitations are evidenced through the analysis of a multilayer and of self-assembled islands
The Planck-LFI flight model composite waveguides
The Low Frequency Instrument on board the PLANCK satellite is designed to
give the most accurate map ever of the CMB anisotropy of the whole sky over a
broad frequency band spanning 27 to 77 GHz. It is made of an array of 22
pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End
Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between
the two parts is made with rectangular Wave Guides. Considerations of different
nature (thermal, electromagnetic and mechanical), imposed stringent
requirements on the WGs characteristics and drove their design. From the
thermal point of view, the WG should guarantee good insulation between the FEM
and the BEM sections to avoid overloading the cryocooler. On the other hand it
is essential that the signals do not undergo excessive attenuation through the
WG. Finally, given the different positions of the FEM modules behind the focal
surface and the mechanical constraints given by the surrounding structures,
different mechanical designs were necessary. A composite configuration of
Stainless Steel and Copper was selected to satisfy all the requirements. Given
the complex shape and the considerable length (about 1.5-2 m), manufacturing
and testing the WGs was a challenge. This work deals with the development of
the LFI WGs, including the choice of the final configuration and of the
fabrication process. It also describes the testing procedure adopted to fully
characterize these components from the electromagnetic point of view and the
space qualification process they underwent. Results obtained during the test
campaign are reported and compared with the stringent requirements. The
performance of the LFI WGs is in line with requirements, and the WGs were
successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins
High Performances Corrugated Feed Horns for Space Applications at Millimetre Wavelengths
We report on the design, fabrication and testing of a set of high performance
corrugated feed horns at 30 GHz, 70 GHz and 100 GHz, built as advanced
prototypes for the Low Frequency Instrument (LFI) of the ESA Planck mission.
The electromagnetic designs include linear (100 GHz) and dual shaped (30 and 70
GHz) profiles. Fabrication has been achieved by direct machining at 30 GHz, and
by electro-formation at higher frequencies. The measured performances on side
lobes and return loss meet the stringent Planck requirements over the large
(20%) instrument bandwidth. Moreover, the advantage in terms of main lobe shape
and side lobes levels of the dual profiled designs has been demonstrated.Comment: 16 pages, 7 figures, accepted for publication in Experimental
Astronom
- …