29 research outputs found

    Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration

    Full text link
    Instability of most prototypical metal organic frameworks (MOFs) in the presence of moisture is always a limita- tion for industrial scale development. In this work, we examine the dissociation mechanism of microporous paddle wheel frameworks M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co; bdc= 1,4-benzenedicarboxylate; ted= triethylenediamine] in controlled humidity environments. Combined in-situ IR spectroscopy, Raman, and Powder x-ray diffraction measurements show that the stability and modification of isostructual M(bdc)(ted)0.5 compounds upon exposure to water vapor critically depend on the central metal ion. A hydrolysis reaction of water molecules with Cu-O-C is observed in the case of Cu(bdc)(ted)0.5. Displacement reactions of ted linkers by water molecules are identified with Zn(bdc)(ted)0.5 and Co(bdc)(ted)0.5. In contrast,. Ni(bdc)(ted)0.5 is less suscept- ible to reaction with water vapors than the other three compounds. In addition, the condensation of water vapors into the framework is necessary to initiate the dissociation reaction. These findings, supported by supported by first principles theoretical van der Waals density functional (vdW-DF) calculations of overall reaction enthalpies, provide the necessary information for de- termining operation conditions of this class of MOFs with paddle wheel secondary building units and guidance for developing more robust units

    Steady-State Radiolysis of Supercritical Water: Model Predictions and Validation

    No full text
    Chemical kinetic models are being developed for the γ-radiolysis of subcritical and supercritical water (SCW) to estimate the concentrations of radiolytically produced oxidants. Many of the physical properties of water change sharply at the critical point. These properties control the chemical stability and transport behavior of the ions and radicals generated by the radiolysis of SCW. The effects of changes in the solvent properties of water on primary radiolytic processes and the subsequent aqueous reaction kinetics can be quite complicated and are not yet well understood. The approach used in this paper was to adapt an existing liquid water radiolysis model (LRM) that has already been validated for lower temperatures and a water vapor radiolysis model (VRM) validated for higher temperatures, but for lower pressures, to calculate radiolysis product speciation under conditions approaching the supercritical state. The results were then extrapolated to the supercritical regime by doing critical analysis of the input parameters. This exercise found that the vapor-like and liquid-like models make similar predictions under some conditions. This paper presents and discusses the LRM and VRM predictions for the concentrations of molecular radiolysis products, H 2 , O 2 , and H 2 O 2 at two different irradiation times, 1 s and 1 hr, as a function of temperature ranging from 25°C to 400°C. The model simulation results are then compared with the concentrations of H 2 , O 2 , and H 2 O 2 measured as a function of γ-irradiation time at 250°C. Model predictions on the effect of H 2 addition on the radiolysis product concentrations at 400°C are presented and compared with the experimental results from the Beloyarsk Nuclear Power Plant (NPP)
    corecore