1,746 research outputs found
Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus
Fluid mechanical peristaltic transport through esophagus has been of concern
in the paper. A mathematical model has been developed with an aim to study the
peristaltic transport of a rheological fluid for arbitrary wave shapes and tube
lengths. The Ostwald-de Waele power law of viscous fluid is considered here to
depict the non-Newtonian behaviour of the fluid. The model is formulated and
analyzed with the specific aim of exploring some important information
concerning the movement of food bolus through the esophagus. The analysis has
been carried out by using lubrication theory. The study is particularly
suitable for cases where the Reynolds number is small. The esophagus is treated
as a circular tube through which the transport of food bolus takes places by
periodic contraction of the esophageal wall. Variation of different variables
concerned with the transport phenomena such as pressure, flow velocity,
particle trajectory and reflux are investigated for a single wave as well as
for a train of periodic peristaltic waves. Locally variable pressure is seen to
be highly sensitive to the flow index `n'. The study clearly shows that
continuous fluid transport for Newtonian/rheological fluids by wave train
propagation is much more effective than widely spaced single wave propagation
in the case of peristaltic movement of food bolus in the esophagus.Comment: Accepted for publication in Applied Mathematics and Mechanics (AMM),
Springe
Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics
The present paper deals with a theoretical investigation of the peristaltic
transport of a couple stress fluid in a porous channel. The study is motivated
towards the physiological flow of blood in the micro-circulatory system, by
taking account of the particle size effect. The velocity, pressure gradient,
stream function and frictional force of blood are investigated, when the
Reynolds number is small and the wavelength is large, by using appropriate
analytical and numerical methods. Effects of different physical parameters
reflecting porosity, Darcy number, couple stress parameter as well as amplitude
ratio on velocity profiles, pumping action and frictional force, streamlines
pattern and trapping of blood are studied with particular emphasis. The
computational results are presented in graphical form. The results are found to
be in good agreement with those of Shapiro et. al \cite{r25} that was carried
out for a non-porous channel in the absence of couple stress effect. The
present study puts forward an important observation that for peristaltic
transport of a couple stress fluid during free pumping when the couple stress
effect of the fluid/Darcy permeability of the medium, flow reversal can be
controlled to a considerable extent. Also by reducing the permeability it is
possible to avoid the occurrence of trapping phenomenon
Detrended Fluctuation Analysis of Systolic Blood Pressure Control Loop
We use detrended fluctuation analysis (DFA) to study the dynamics of blood
pressure oscillations and its feedback control in rats by analyzing systolic
pressure time series before and after a surgical procedure that interrupts its
control loop. We found, for each situation, a crossover between two scaling
regions characterized by exponents that reflect the nature of the feedback
control and its range of operation. In addition, we found evidences of
adaptation in the dynamics of blood pressure regulation a few days after
surgical disruption of its main feedback circuit. Based on the paradigm of
antagonistic, bipartite (vagal and sympathetic) action of the central nerve
system, we propose a simple model for pressure homeostasis as the balance
between two nonlinear opposing forces, successfully reproducing the crossover
observed in the DFA of actual pressure signals
Network Physiology reveals relations between network topology and physiological function
The human organism is an integrated network where complex physiologic
systems, each with its own regulatory mechanisms, continuously interact, and
where failure of one system can trigger a breakdown of the entire network.
Identifying and quantifying dynamical networks of diverse systems with
different types of interactions is a challenge. Here, we develop a framework to
probe interactions among diverse systems, and we identify a physiologic
network. We find that each physiologic state is characterized by a specific
network structure, demonstrating a robust interplay between network topology
and function. Across physiologic states the network undergoes topological
transitions associated with fast reorganization of physiologic interactions on
time scales of a few minutes, indicating high network flexibility in response
to perturbations. The proposed system-wide integrative approach may facilitate
the development of a new field, Network Physiology.Comment: 12 pages, 9 figure
Peristaltic Pumping of Blood Through Small Vessels of Varying Cross-section
The paper is devoted to a study of the peristaltic motion of blood in the
micro-circulatory system. The vessel is considered to be of varying
cross-section. The progressive peristaltic waves are taken to be of sinusoidal
nature. Blood is considered to be a Herschel-Bulkley fluid. Of particular
concern here is to investigate the effects of amplitude ratio, mean pressure
gradient, yield stress and the power law index on the velocity distribution,
streamline pattern and wall shear stress. On the basis of the derived
analytical expression, extensive numerical calculations have been made. The
study reveals that velocity of blood and wall shear stress are appreciably
affected due to the non-uniform geometry of blood vessels. They are also highly
sensitive to the magnitude of the amplitude ratio and the value of the fluid
index.Comment: Accepted for publication in ASME journal of Applied Mechanics. arXiv
admin note: text overlap with arXiv:1108.1285v
Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models
- …