695 research outputs found
Changes of the Atlantic meridional overturning circulation of the past 30ka recorded in a depth transect at the Blake Outer Ridge
Oceans and climate are a tightly coupled system interacting with each other in various ways such as storage of
carbon dioxide in the deep ocean. Within the global conveyor belt the Atlantic Meridional Overturning Circulation (AMOC) holds a key function, transporting warm salty surface waters from the tropical to the northern Atlantic where deep water formation takes place. Following the continental rise of North America this newly formed deep water propagates southward as Western Boundary Undercurrent (WBUC) ventilating the deep Atlantic. In the past (e.g. the last glacial cycle) strength and geometry of the AMOC have changed significantly. This study aims to provide a better understanding of the temporal and spatial (also depth depended) evolution of the AMOC in the western Atlantic sector since the last glacial (âŒ30 ka). We have investigated four sediment cores of the Blake Outer Ridge (30°N, 74°W; ODP 1059 to 1062) in a depth transect from 3000 to 4700 m water depth in the main flow path of the WBUC. We measured four down-core profiles of neodymium (ΔNd) and 231Pa/230Th isotopes for the reconstruction of water mass provenance and circulation strength of the last âŒ30 ka. In contrast to published Nd isotope and 231Pa/230Th records from the Blake Ridge area our records are of unprecedented resolution, resolving climate key features of the North Atlantic region: Heinrich Stadials (HS) 1 and 2, the Last Glacial Maximum (LGM), the BĂžlling-AllerĂžd and Younger Dryas (YD). Radiogenic Nd isotope signatures during the LGM reveal AABW to be the prevalent water mass in the deep western North Atlantic. The trend to more unradiogenic signatures during the deglaciation point to an increased formation of NADW which was again replaced by AABW during YD. The Holocene shows the most unradiogenic signatures and therefore established NADW. The circulation strength-proxy 231Pa/230Th indicates reduced LGM deep circulation, a pronounced slowdown during HS1 and a strong and deep circulation during the Holocene. Compared to isotopic records from the Bermuda Rise (ODP 1063) we found depth depended geometry changes of the WBUC which have occurred through the last glacial. Here, we focus on how deep northern sourced water has reached during phases of reduced circulation (indicated by increased 231Pa/230Th ratios) and the timing of this southward progradation of lower NADW
Waiting for Godot: A cross sectional survey based analysis of the hydroxychloroquine prophylaxis strategy against COVID-19 in India
Background: India currently has the second largest burden of infections due to COVID-19. Health Care Worker (HCW) shortages are endemic to Indian healthcare. It should therefore be a huge priority to protect this precious resource as a critical component of the systemic response to this pandemic. Advisories from the Indian Council of Medical Research (ICMR) have focused on using hydroxychloroquine prophylaxis against COVID-19 in at risk HCW. This prophylaxis strategy has no evidence. In further jeopardy there appear to insubstantial attempts to build this evidence as well. In this connection, we commissioned a survey within our Institution to estimate the penetration of hydroxychloroquine (HCQ) use and use this to statistically model the impact of current ongoing studies in India. We also briefly review the literature on HCQ prophylaxis for COVID-19. Design and methods: A structured survey designed using RedCAP application was disseminated among healthcare professionals employed at an academic referral tertiary care centre via online social media platforms. The survey was kept open for the entire month of June 2020. The survey was additionally used to statistically model the size of studies required to comprehensively address the efficacy of HCQ in this setting.Results: 522 responses were received, of which 4 were incomplete. The ICMR strategy of 4 or more doses of HCQ was complete only in 15% of HCW in our survey. The majority of respondents were doctors (238, 46%). Amongst all category of responders, only 12% (n=63) received the full course. A majority of those who initiated the chemoprophylaxis with HCQ turned out to be medical professionals (59/63) with neither nurse nor other categories of healthcare workers accessing the medication. The respondents of our institutional survey did not report any life-threatening side effects. Presuming efficacy as per ICMR modelling for new registry trial on the lines of the published case control study, equal allocation between cases and controls and assuming a RR of 1.3.6, the power of such a study would be very low for n=2000 for event rates from 2.5-12.5%. Conclusion: We report the low penetration of HCQ chemoprophylaxis among the healthcare workers of our institution. We highlight the inherent drawbacks in the study design of current national COVID related trial based on the statistical modelling of our survey results and published literature, and thereby emphasis the need of evidence-based strategies contributing to research policy at national level
Structure Determination and Biochemical Characterization of a Putative HNH Endonuclease from Geobacter metallireducens GS-15
The crystal structure of a putative HNH endonuclease, Gmet_0936 protein from Geobacter metallireducens GS-15, has been determined at 2.6 Ă
resolution using single-wavelength anomalous dispersion method. The structure contains a two-stranded anti-parallel ÎČ-sheet that are surrounded by two helices on each face, and reveals a Zn ion bound in each monomer, coordinated by residues Cys38, Cys41, Cys73, and Cys76, which likely plays an important structural role in stabilizing the overall conformation. Structural homologs of Gmet_0936 include Hpy99I endonuclease, phage T4 endonuclease VII, and other HNH endonucleases, with these enzymes sharing 15â20% amino acid sequence identity. An overlay of Gmet_0936 and Hpy99I structures shows that most of the secondary structure elements, catalytic residues as well as the zinc binding site (zinc ribbon) are conserved. However, Gmet_0936 lacks the N-terminal domain of Hpy99I, which mediates DNA binding as well as dimerization. Purified Gmet_0936 forms dimers in solution and a dimer of the protein is observed in the crystal, but with a different mode of dimerization as compared to Hpy99I. Gmet_0936 and its N77H variant show a weak DNA binding activity in a DNA mobility shift assay and a weak Mn2+-dependent nicking activity on supercoiled plasmids in low pH buffers. The preferred substrate appears to be acid and heat-treated DNA with AP sites, suggesting Gmet_0936 may be a DNA repair enzyme
Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy
Author summary Plant hormone signaling is crucial for development and for adequate responses to biotic and abiotic environmental conditions. The most recently discovered plant hormone receptor KARRIKIN INSENSITVE 2 (KAI2), binds a small butenolide called karrikin that was discovered in smoke and induces germination of fire-following plants. Several lines of evidence suggest a yet elusive endogenous hormone, which acts as ligand for KAI2. Until its identification, synthetic karrikins or the strigolactone-like molecule GR24 are used to probe the karrikin signaling pathway. While the model plant Arabidopsis contains only one KAI2 gene, several copies are maintained in other species suggesting sub-functionalization. We report that genomes of species in the legume hologalegina clade encode two KAI2 versions. In Lotus japonicus, they diverge in their binding ability to synthetic ligands due to three amino acid changes in their binding pocket, of which two are conserved across legumes and one has independently occurred in several species across the angiosperm phylogeny. Surprisingly, L. japonicus hypocotyls react with developmental responses to two different karrikins (KAR(1), KAR(2)) and a synthetic strigolactone rac-GR24, while root development responds only to KAR(1). This shows that there is not only diversity in ligand-receptor relationships but possibly also organ-specific uptake or metabolism of divergent butenolide molecules. Karrikins (KARs), smoke-derived butenolides, are perceived by the alpha/beta-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) and thought to mimic endogenous, yet elusive plant hormones tentatively called KAI2-ligands (KLs). The sensitivity to different karrikin types as well as the number of KAI2 paralogs varies among plant species, suggesting diversification and co-evolution of ligand-receptor relationships. We found that the genomes of legumes, comprising a number of important crops with protein-rich, nutritious seed, contain two or more KAI2 copies. We uncover sub-functionalization of the two KAI2 versions in the model legume Lotus japonicus and demonstrate differences in their ability to bind the synthetic ligand GR24(ent-5DS) in vitro and in genetic assays with Lotus japonicus and the heterologous Arabidopsis thaliana background. These differences can be explained by the exchange of a widely conserved phenylalanine in the binding pocket of KAI2a with a tryptophan in KAI2b, which arose independently in KAI2 proteins of several unrelated angiosperms. Furthermore, two polymorphic residues in the binding pocket are conserved across a number of legumes and may contribute to ligand binding preferences. The diversification of KAI2 binding pockets suggests the occurrence of several different KLs acting in non-fire following plants, or an escape from possible antagonistic exogenous molecules. Unexpectedly, L. japonicus responds to diverse synthetic KAI2-ligands in an organ-specific manner. Hypocotyl growth responds to KAR(1), KAR(2) and rac-GR24, while root system development responds only to KAR(1). This differential responsiveness cannot be explained by receptor-ligand preferences alone, because LjKAI2a is sufficient for karrikin responses in the hypocotyl, while LjKAI2a and LjKAI2b operate redundantly in roots. Instead, it likely reflects differences between plant organs in their ability to transport or metabolise the synthetic KLs. Our findings provide new insights into the evolution and diversity of butenolide ligand-receptor relationships, and open novel research avenues into their ecological significance and the mechanisms controlling developmental responses to divergent KLs
SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis
Karrikins are smoke-derived compounds presumed to mimic endogenous signalling molecules (KAI2-ligand, KL), whose signalling pathway is closely related to that of strigolactones (SLs), important regulators of plant development. Both karrikins/KLs and SLs are perceived by closely related α/ÎČ hydrolase receptors (KAI2 and D14 respectively), and signalling through both receptors requires the F-box protein MAX2. Furthermore, both pathways trigger proteasome-mediated degradation of related SMAX1-LIKE (SMXL) proteins, to influence development. It has previously been suggested in multiple studies that SLs are important regulators of root and root hair development in Arabidopsis, but these conclusions are based on phenotypes observed in the non-specific max2 mutants and by use of racemic-GR24, a mixture of stereoisomers that activates both D14 and KAI2 signalling pathways. Here, we demonstrate that the majority of the effects on Arabidopsis root development previously attributed to SL signalling are actually mediated by the KAI2 signalling pathway. Using mutants defective in SL or KL synthesis and/or perception, we show that KAI2-mediated signalling alone regulates root hair density and root hair length as well as root skewing, straightness and diameter, while both KAI2 and D14 pathways regulate lateral root density and epidermal cell length. We test the key hypothesis that KAI2 signals by a non-canonical receptor-target mechanism in the context of root development. Our results provide no evidence for this, and we instead show that all effects of KAI2 in the root can be explained by canonical SMAX1/SMXL2 activity. However, we do find evidence for non-canonical GR24 ligand-receptor interactions in D14/KAI2-mediated root hair development. Overall, our results demonstrate that the KAI2 signalling pathway is an important new regulator of root hair and root development in Arabidopsis and lays an important basis for research into a molecular understanding of how very similar and partially overlapping hormone signalling pathways regulate different phenotypic outputs
Functional Conservation of the Drosophila gooseberry Gene and Its Evolutionary Alleles
The Drosophila Pax gene gooseberry (gsb) is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution
Ancient marine sediment DNA reveals diatom transition in Antarctica
Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We ïŹnd evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to openocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Postprin
Measurement of the diffractive structure function in deep inelastic scattering at HERA
This paper presents an analysis of the inclusive properties of diffractive
deep inelastic scattering events produced in interactions at HERA. The
events are characterised by a rapidity gap between the outgoing proton system
and the remaining hadronic system. Inclusive distributions are presented and
compared with Monte Carlo models for diffractive processes. The data are
consistent with models where the pomeron structure function has a hard and a
soft contribution. The diffractive structure function is measured as a function
of \xpom, the momentum fraction lost by the proton, of , the momentum
fraction of the struck quark with respect to \xpom, and of . The \xpom
dependence is consistent with the form \xpoma where
in all bins of and
. In the measured range, the diffractive structure function
approximately scales with at fixed . In an Ingelman-Schlein type
model, where commonly used pomeron flux factor normalisations are assumed, it
is found that the quarks within the pomeron do not saturate the momentum sum
rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil
The ICON Earth System Model Version 1.0
This work documents ICON-ESM 1.0, the first version of a coupled model based 19 on the ICON framework 20 âą Performance of ICON-ESM is assessed by means of CMIP6 DECK experiments 21 at standard CMIP-type resolution 22 âą ICON-ESM reproduces the observed temperature evolution. Biases in clouds, winds, 23 sea-ice, and ocean properties are larger than in MPI-ESM. Abstract 25 This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first cou-26 pled model based on the ICON (ICOsahedral Non-hydrostatic) framework with its un-27 structured, icosahedral grid concept. The ICON-A atmosphere uses a nonhydrostatic dy-28 namical core and the ocean model ICON-O builds on the same ICON infrastructure, but 29 applies the Boussinesq and hydrostatic approximation and includes a sea-ice model. The 30 ICON-Land module provides a new framework for the modelling of land processes and 31 the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are repre-32 sented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin-33 up of a base-line version at a resolution typical for models participating in the Coupled 34 Model Intercomparison Project (CMIP). The performance of ICON-ESM is assessed by 35 means of a set of standard CMIP6 simulations. Achievements are well-balanced top-of-36 atmosphere radiation, stable key climate quantities in the control simulation, and a good 37 representation of the historical surface temperature evolution. The model has overall bi-38 ases, which are comparable to those of other CMIP models, but ICON-ESM performs 39 less well than its predecessor, the Max Planck Institute Earth System Model. Problem-40 atic biases are diagnosed in ICON-ESM in the vertical cloud distribution and the mean 41 zonal wind field. In the ocean, sub-surface temperature and salinity biases are of con-42 cern as is a too strong seasonal cycle of the sea-ice cover in both hemispheres. ICON-43 ESM V1.0 serves as a basis for further developments that will take advantage of ICON-44 specific properties such as spatially varying resolution, and configurations at very high 45 resolution. 46 Plain Language Summary 47 ICON-ESM is a completely new coupled climate and earth system model that ap-48 plies novel design principles and numerical techniques. The atmosphere model applies 49 a non-hydrostatic dynamical core, both atmosphere and ocean models apply unstruc-50 tured meshes, and the model is adapted for high-performance computing systems. This 51 article describes how the component models for atmosphere, land, and ocean are cou-52 pled together and how we achieve a stable climate by setting certain tuning parameters 53 and performing sensitivity experiments. We evaluate the performance of our new model 54 by running a set of experiments under pre-industrial and historical climate conditions 55 as well as a set of idealized greenhouse-gas-increase experiments. These experiments were 56 designed by the Coupled Model Intercomparison Project (CMIP) and allow us to com-57 pare the results to those from other CMIP models and the predecessor of our model, the 58 Max Planck Institute for Meteorology Earth System Model. While we diagnose overall 59 satisfactory performance, we find that ICON-ESM features somewhat larger biases in 60 several quantities compared to its predecessor at comparable grid resolution. We empha-61 size that the present configuration serves as a basis from where future development steps 62 will open up new perspectives in earth system modellin
- âŠ