16,349 research outputs found

    On Cr−C^r-closing for flows on 2-manifolds

    Full text link
    For some full measure subset B of the set of iet's (i.e. interval exchange transformations) the following is satisfied: Let X be a CrC^r, 1≤r≤∞1\le r\le \infty, vector field, with finitely many singularities, on a compact orientable surface M. Given a nontrivial recurrent point p∈Mp\in M of X, the holonomy map around p is semi-conjugate to an iet E:[0,1)→[0,1).E :[0,1) \to [0,1). If E∈BE\in B then there exists a CrC^r vector field Y, arbitrarily close to X, in the Cr−C^r-topology, such that Y has a closed trajectory passing through p.Comment: 7 pages, 1 figur

    Nongauge bright soliton of the nonlinear Schrodinger (NLS) equation and a family of generalized NLS equations

    Get PDF
    We present an approach to the bright soliton solution of the NLS equation from the standpoint of introducing a constant potential term in the equation. We discuss a `nongauge' bright soliton for which both the envelope and the phase depend only on the traveling variable. We also construct a family of generalized NLS equations with solitonic sech^p solutions in the traveling variable and find an exact equivalence with other nonlinear equations, such as the Korteveg-de Vries and Benjamin-Bona-Mahony equations when p=2Comment: ~4 pages, 3 figures, 16 references, published versio

    Experimental Study of the Role of Atomic Interactions on Quantum Transport

    Full text link
    We report an experimental study of quantum transport for atoms confined in a periodic potential and compare between thermal and BEC initial conditions. We observe ballistic transport for all values of well depth and initial conditions, and the measured expansion velocity for thermal atoms is in excellent agreement with a single-particle model. For weak wells, the expansion of the BEC is also in excellent agreement with single-particle theory, using an effective temperature. We observe a crossover to a new regime for the BEC case as the well depth is increased, indicating the importance of interactions on quantum transport.Comment: 4 pages, 3 figure

    Bound state structure and electromagnetic form factor beyond the ladder approximation

    Full text link
    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.Comment: 19 pages, 6 figures, submitted to Phys. Lett.

    Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production

    Get PDF
    Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate their C, N, and O yields. Using the Monash University Stellar Evolution code we computed and analysed the evolution of stars of metallicity Z = 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars lose most of their envelopes before their cores reach the Chandrasekhar mass, so our standard models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M_sun for our 4 M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Our results have implications for the early chemical evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&

    Mechanical transmission of rotational motion between molecular-scale gears

    Get PDF
    Manipulating and coupling molecule gears is the first step towards realizing molecular-scale mechanical machines. Here, we theoretically investigate the behavior of such gears using molecular dynamics simulations. Within a nearly rigid-body approximation we reduce the dynamics of the gears to the rotational motion around the orientation vector. This allows us to study their behavior based on a few collective variables. Specifically, for a single hexa (4-tert-butylphenyl) benzene molecule we show that the rotational-angle dynamics corresponds to the one of a Brownian rotor. For two such coupled gears, we extract the effective interaction potential and find that it is strongly dependent on the center of mass distance. Finally, we study the collective motion of a train of gears. We demonstrate the existence of three different regimes depending on the magnitude of the driving-torque of the first gear: underdriving, driving and overdriving, which correspond, respectively, to no collective rotation, collective rotation and only single gear rotation. This behavior can be understood in terms of a simplified interaction potential

    A Calibrated Method of Massage Therapy Decreases Systolic Blood Pressure Concomitant With Changes in Heart Rate Variability in Male Rats.

    Get PDF
    ObjectiveThe purpose of this study was to develop a method for applying calibrated manual massage pressures by using commonly available, inexpensive sphygmomanometer parts and validate the use of this approach as a quantitative method of applying massage therapy to rodents.MethodsMassage pressures were monitored by using a modified neonatal blood pressure (BP) cuff attached to an aneroid gauge. Lightly anesthetized rats were stroked on the ventral abdomen for 5 minutes at pressures of 20 mm Hg and 40 mm Hg. Blood pressure was monitored noninvasively for 20 minutes following massage therapy at 5-minute intervals. Interexaminer reliability was assessed by applying 20 mm Hg and 40 mm Hg pressures to a digital scale in the presence or absence of the pressure gauge.ResultsWith the use of this method, we observed good interexaminer reliability, with intraclass coefficients of 0.989 versus 0.624 in blinded controls. In Long-Evans rats, systolic BP dropped by an average of 9.86% ± 0.27% following application of 40 mm Hg massage pressure. Similar effects were seen following 20 mm Hg pressure (6.52% ± 1.7%), although latency to effect was greater than at 40 mm Hg. Sprague-Dawley rats behaved similarly to Long-Evans rats. Low-frequency/high-frequency ratio, a widely-used index of autonomic tone in cardiovascular regulation, showed a significant increase within 5 minutes after 40 mm Hg massage pressure was applied.ConclusionsThe calibrated massage method was shown to be a reproducible method for applying massage pressures in rodents and lowering BP

    Reversible Fluorination of Graphene: towards a Two-Dimensional Wide Bandgap Semiconductor

    Full text link
    We report the synthesis and evidence of graphene fluoride, a two-dimensional wide bandgap semiconductor derived from graphene. Graphene fluoride exhibits hexagonal crystalline order and strongly insulating behavior with resistance exceeding 10 GΩ\Omega at room temperature. Electron transport in graphene fluoride is well described by variable-range hopping in two dimensions due to the presence of localized states in the band gap. Graphene obtained through the reduction of graphene fluoride is highly conductive, exhibiting a resistivity of less than 100 kΩ\Omega at room temperature. Our approach provides a new path to reversibly engineer the band structure and conductivity of graphene for electronic and optical applications.Comment: 7 pages, 5 figures, revtex, to appear in PR
    • …
    corecore