89 research outputs found

    Fundamentos metodológicos para implementar y evaluar la educación ambiental en instituciones de educación en México

    Get PDF
    El presente artículo aborda la importancia y formas para implementar, incorporar y evaluar la educación ambiental en el curriculum formal de las instituciones de educación en México. Se parte del análisis de los antecedentes históricos desde el nivel internacional, nacional e institucional. Se estudian los conceptos y métodos esenciales para establecer un modelo de implementación y evaluación que se fortalece con el análisis documental y la percepción social de la comunidad educativa. En la propuesta de educación ambiental, el sustento social y pedagógico se concreta a través de la formación docente, actualización de los planes de estudio, contenidos y secuencias de aprendizaje. Se sostiene que la implementación y evaluación de la educación ambiental en las instituciones educativas de México debe ser permanente, secuencial e intergeneracional Se concluye que la implementación, incorporación de la evaluación de la educación ambiental en las diversas instituciones de México tiene limitantes organizacionales, toda vez que, en contraste con las áreas de oportunidad socioeducativa, la cultura ambiental no abarca todos los aspectos normativos y éticos de la sociedad mexicana

    Genome-wide association study of treatment-related toxicity two years following radiotherapy for breast cancer

    Get PDF
    Càncer de mama; Toxicitat crònica; RadiogenòmicaBreast cancer; Chronic toxicity; RadiogenomicsCáncer de mama; Toxicidad crónica; RadiogenómicaBackground and purpose Up to a quarter of breast cancer patients treated by surgery and radiotherapy experience clinically significant toxicity. If patients at high risk of adverse effects could be identified at diagnosis, their treatment could be tailored accordingly. This study was designed to identify common single nucleotide polymorphisms (SNPs) associated with toxicity two years following whole breast radiotherapy. Materials and Methods A genome-wide association study (GWAS) was performed in 1,640 breast cancer patients with complete SNP, clinical, treatment and toxicity data, recruited across 18 European and US centres into the prospective REQUITE cohort study. Toxicity data (CTCAE v4.0) were collected at baseline, end of radiotherapy, and annual follow-up. A total of 7,097,340 SNPs were tested for association with the residuals of toxicity endpoints, adjusted for clinical, treatment co-variates and population substructure. Results Quantile-quantile plots showed more associations with toxicity above the p < 5 × 10-5 level than expected by chance. Eight SNPs reached genome-wide significance. Nipple retraction grade ≥ 2 was associated with the rs188287402 variant (p = 2.80 × 10-8), breast oedema grade ≥ 2 with rs12657177 (p = 1.12 × 10-10), rs75912034 (p = 1.12 × 10-10), rs145328458 (p = 1.06 × 10-9) and rs61966612 (p = 1.23 × 10-9), induration grade ≥ 2 with rs77311050 (p = 2.54 × 10-8) and rs34063419 (p = 1.21 × 10-8), and arm lymphoedema grade ≥ 1 with rs643644 (p = 3.54 × 10-8). Heritability estimates across significant endpoints ranged from 25% to 39%. Our study did not replicate previously reported SNPs associated with breast radiation toxicity at the pre-specified significance level. Conclusions This GWAS for long-term breast radiation toxicity provides further evidence for significant association of common SNPs with distinct toxicity endpoints.REQUITE received funding from the European Union's Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 601826. We thank all patients who participated in the REQUITE study and all the *members of the REQUITE project consortium in: Belgium: Ghent University Hospital; KU Leuven. France: ICM Montpellier, CHU Nîmes (Department of Radiation Oncology, CHU Nîmes, Nîmes, France). Germany: Zentrum für Strahlentherapie Freiburg (Dr. Petra Stegmaier); Städtisches Klinikum Karlsruhe (Dr. Bernhard Neu); ViDia Christliche Kliniken Karlsruhe (Prof. Johannes Claßen); Klinikum der Stadt Ludwigshafen GmbH (PD Dr. Thomas Schnabel); Universitätsklinikum Mannheim: Anette Kipke, Stefanie Kolb, Anke Keller and Christiane Zimmermann; Strahlentherapie Speyer (Dr. Jörg Schäfer). The researchers at DKFZ also thank Anusha Müller, Irmgard Helmbold, Thomas Heger, and Sabine Behrens. Petra Seibold was supported by ERA PerMed JCT2018 funding (ERAPERMED2018-244, BMBF #01KU1912) and BfS funding (#3619S42261). Italy: Fondazione IRCCS Istituto Nazionale dei Tumori, Milano; Candiolo Cancer Institute – FPO, IRCCS. Tiziana Rancati was partially funded by Fondazione Italo Monzino. Spain: Barcelona: Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus; VHIO acknowledge the Cellex Foundation for providing research facilities and the CERCA Programme/Generalitat de Catalunya for institutional support. Sara Gutiérrez-Enríquez is supported by ERAPerMed JTC2018 funding (ERAPERMED2018-244 and SLT011/18/00005) and the Government of Catalonia (2021SGR01112). Santiago: Complexo Hospitalario Universitario de Santiago. Ana Vega is supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds (PI22/00589, PI19/01424, PI16/00046, PI13/ 02030, PI10/00164; INT20/00071, INT17/00133, INT16/00154, INT15/00070), through the Autonomous Government of Galicia (Consolidation and structuring program: IN607B), by ERAPerMed JTC2018 funding (ERAPERMED2018-244) and by the AECC (PRYES211091VEGA). UK: University Hospitals of Leicester NHS Trust: Theresa Beaver, Sara Barrows, Monika Kaushik, Frances Kenny, Jaroslaw Krupa, Kelly V Lambert, Simon M Pilgrim, Sheila Shokuhi, Kalliope Valassidou, Kiran Kancherla, Kufre Sampson, Ahmed Osman and Kaitlin Walker. Harkeran K Jandu is supported by the Wellcome Trust Genetic Epidemiology and Public Health Genomics Doctoral Training Partnership (Grant Number: 218505/Z/19/Z). Tim Rattay was funded by a National Institute of Health Research (NIHR) Clinical Lectureship (CL 2017-11-002). He was previously funded by an NIHR Doctoral Research Fellowship (DRF 2014-07-079). This publication presents independent research funded by the NIHR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. University of Manchester: Catharine West and Rebecca Elliott are supported by the NIHR Manchester Biomedical Research Centre and Catharine West is supported by Cancer Research UK (C1094/A18504, C147/A25254). USA: Mount Sinai Hospital, New York

    Contouring variation affects estimates of normal tissue complication probability for breast fibrosis after radiotherapy

    Get PDF
    Breast cancer; Fibrosis; Late effectsCàncer de mama; Fibrosi; Efectes tardansCáncer de mama; Fibrosis; Efectos tardíosBackground Normal tissue complication probability (NTCP) models can be useful to estimate the risk of fibrosis after breast-conserving surgery (BCS) and radiotherapy (RT) to the breast. However, they are subject to uncertainties. We present the impact of contouring variation on the prediction of fibrosis. Materials and methods 280 breast cancer patients treated BCS-RT were included. Nine Clinical Target Volume (CTV) contours were created for each patient: i) CTV_crop (reference), cropped 5 mm from the skin and ii) CTV_skin, uncropped and including the skin, iii) segmenting the 95% isodose (Iso95%) and iv) 3 different auto-contouring atlases generating uncropped and cropped contours (Atlas_skin/Atlas_crop). To illustrate the impact of contour variation on NTCP estimates, we applied two equations predicting fibrosis grade 2 at 5 years, based on Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) models, respectively, to each contour. Differences were evaluated using repeated-measures ANOVA. For completeness, the association between observed fibrosis events and NTCP estimates was also evaluated using logistic regression. Results There were minimal differences between contours when the same contouring approach was followed (cropped and uncropped). CTV_skin and Atlas_skin contours had lower NTCP estimates (−3.92%, IQR 4.00, p < 0.05) compared to CTV_crop. No significant difference was observed for Atlas_crop and Iso95% contours compared to CTV_crop. For the whole cohort, NTCP estimates varied between 5.3% and 49.5% (LKB) or 2.2% and 49.6% (RS) depending on the choice of contours. NTCP estimates for individual patients varied by up to a factor of 4. Estimates from “skin” contours showed higher agreement with observed events. Conclusion Contour variations can lead to significantly different NTCP estimates for breast fibrosis, highlighting the importance of standardising breast contours before developing and/or applying NTCP models.REQUITE received funding from the European Union's Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 601826. We thank all patients who participated in the REQUITE study and all study personnel involved in the REQUITE project. Marianne Aznar acknowledges the support of the Engineering and Physical Sciences Research Council (Grant number EP/T028017/1) This work was supported by Cancer Research UK RadNet Manchester [C1994/A28701] and the NIHR Manchester Biomedical Research Centre (NIHR203308). The researchers at DKFZ also thank Anusha Müller, Irmgard Helmbold, Thomas Heger, Sabine Behrens, Juan Camilo Rosas. Petra Seibold was supported by ERA PerMed 2018 funding (BMBF #01KU1912) and BfS funding (#3619S42261). S. Gutiérrez-Enríquez is supported by the Government of Catalonia 2021SGR01112. The VHIO authors acknowledge the Cellex Foundation for providing research equipment and facilities and thank CERCA Program/Generalitat de Catalunya for institutional support

    (Pre)treatment risk factors for late fatigue and fatigue trajectories following radiotherapy for breast cancer

    Get PDF
    Breast cancer; Fatigue; RadiotherapyCáncer de mama; Fatiga; RadioterapiaCàncer de mama; Fatiga; RadioteràpiaFatigue is common in breast-cancer survivors. Our study assessed fatigue longitudinally in breast cancer patients receiving adjuvant radiotherapy (RT) and aimed to identify risk factors associated with long-term fatigue and underlying fatigue trajectories. Fatigue was measured in a prospective multicenter cohort (REQUITE) using the Multidimensional Fatigue Inventory (MFI-20) and analyzed using mixed models. Multivariable logistic models identified factors associated with fatigue dimensions at 2 years post-RT and latent class growth analysis identified individual fatigue trajectories. A total of 1443, 1302, 1203 and 1098 patients completed the MFI-20 at baseline, end of RT, after 1 and 2 years. Overall, levels of fatigue significantly increased from baseline to end of RT for all fatigue dimensions (P < .05) and returned to baseline levels after 2 years. A quarter of patients were assigned to latent trajectory high (23.7%) and moderate (24.8%) fatigue classes, while 46.3% and 5.2% to the low and decreasing fatigue classes, respectively. Factors associated with multiple fatigue dimensions at 2 years include age, BMI, global health status, insomnia, pain, dyspnea and depression. Fatigue present at baseline was consistently associated with all five MFI-20 fatigue dimensions (ORGeneralFatigue = 3.81, P < .001). From latent trajectory analysis, patients with a combination of factors such as pain, insomnia, depression, younger age and endocrine therapy had a particularly high risk of developing early and persistent high fatigue years after treatment. Our results confirmed the multidimensional nature of fatigue and will help clinicians identify breast cancer patients at higher risk of having persistent/late fatigue so that tailored interventions can be delivered.We thank all patients who participated in the REQUITE study and all the REQUITE staff involved in this project. Belgium: Ghent University Hospital; KU Leuven. France: ICM Montpellier, CHU Nîmes (Department of Radiation Oncology, CHU Nîmes, Nîmes, France). Germany: Zentrum für Strahlentherapie Freiburg (Dr. Petra Stegmaier); Städtisches Klinikum Karlsruhe (Dr. Bernhard Neu); ViDia Christliche Kliniken Karlsruhe (Prof. Johannes Claßen); Klinikum der Stadt Ludwigshafen GmbH (PD Dr. Thomas Schnabel); Universitätsklinikum Mannheim: Anette Kipke and Christiane Zimmermann; Strahlentherapie Speyer (Dr. Jörg Schäfer). The researchers at DKFZ also thank Anusha Müller, Irmgard Helmbold, Thomas Heger, Sabine Behrens, Axel Benner, Nicholas Schreck. Petra Seibold is supported by ERA PerMed 2018 funding (BMBF #01KU1912) and BfS funding (#3619S42261). Italy: Fondazione IRCCS Istituto Nazionale dei Tumori, Milano; Candiolo Cancer Institute – FPO, IRCCS. Tiziana Rancati was partially funded by Fondazione Italo Monzino. The Netherlands: Sylvie Canisius at Maastro Clinics, Maastricht. Spain: Barcelona: Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus; VHIO acknowledge the Cellex Foundation for providing research facilities and thank CERCA Programme/Generalitat de Catalunya for institutional support. Sara Gutiérrez-Enríquez is supported by ERAPerMed JTC2018 funding (ERAPERMED2018-244 and SLT011/18/00005). Santiago: Complexo Hospitalario Universitario de Santiago. Ana Vega: supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds (PI22/00589, PI19/01424; INT20/00071); the ERAPerMed JTC2018 funding (AC18/00117); the Autonomous Government of Galicia (Consolidation and structuring program: IN607B), by the Fundación Mutua Madrileña (call 2018) and by the AECC (PRYES211091VEGA); UK: University Hospitals of Leicester NHS Trust; Theresa Beaver, Kaitlin Walker and Sara Barrows. Dr Tim Rattay was funded by a National Institute of Health Research (NIHR) Clinical Lectureship (CL 2017-11-002) and is currently supported by the NIHR Leicester Biomedical Research Centre. He was previously funded by a National Institute of Health Research (NIHR) Doctoral Research Fellowship (DRF 2014-07-079). This publication presents independent research funded by the NIHR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Manchester: Catharine West and Rebecca Elliott are supported by NIHR Manchester Biomedical Research Centre and Catharine West is supported by Cancer Research UK (C1094/A18504, C147/A25254). USA: Mount Sinai Hospital, New York. Open Access funding enabled and organized by Projekt DEAL

    Impact of the Introduction of a Two-Step Laboratory Diagnostic Algorithm in the Incidence and Earlier Diagnosis of Clostridioides difficile Infection

    Get PDF
    Our aim was to determine changes in the incidence of CD infection (CDI) following the introduction of a two-step diagnostic algorithm and to analyze CDI cases diagnosed in the study period. We retrospectively studied CDI (January 2009 to July 2018) in adults diagnosed by toxin enzyme immunoassay (EIA) (2009-2012) or toxin-EIA + polymerase chain reaction (PCR) algorithm (2013 onwards). A total of 443 patients with a first episode of CDI were included, 297 (67.1%) toxin-EIA-positive and 146 (32.9%) toxin-EIA-negative/PCR-positive were only identified through the two-step algorithm including the PCR test. The incidence of CDI increased from 0.9 to 4.7/10,000 patient-days (p < 0.01) and 146 (32.9%) toxin-negative CDI were diagnosed. Testing rate increased from 24.4 to 59.5/10,000 patient-days (p < 0.01) and the percentage of positive stools rose from 3.9% to 12.5% (p < 0.01). CD toxin-positive patients had a higher frequency of severe presentation and a lower rate of immunosuppressive drugs and inflammatory bowel disease. Mortality (16.3%) was significantly higher in patients with hematological neoplasm, intensive care unit admission and complicated disease. Recurrences (14.9%) were significantly higher with proton pump inhibitor exposure. The two-step diagnostic algorithm facilitates earlier diagnosis, potentially impacting patient outcomes and nosocomial spread. CD-toxin-positive patients had a more severe clinical presentation, probably due to increased CD bacterial load with higher toxin concentration. This early and easy marker should alert clinicians of potentially more severe outcomes

    Large-scale meta-genome-wide association study reveals common genetic factors linked to radiation-induced acute toxicities across cancer types

    Get PDF
    Meta-genome; Toxicities; CancerMetagenoma; Toxicidades; CáncerMetagenoma; Toxicitats; CàncerBackground This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute radiation-induced toxicity across 4 cancer types (prostate, head and neck, breast, and lung). Methods A genome-wide association study meta-analysis was performed using 19 cohorts totaling 12 042 patients. Acute standardized total average toxicity (STATacute) was modelled using a generalized linear regression model for additive effect of genetic variants, adjusted for demographic and clinical covariates (rSTATacute). Linkage disequilibrium score regression estimated shared single-nucleotide variation (SNV—formerly SNP)–based heritability of rSTATacute in all patients and for each cancer type. Results Shared SNV-based heritability of STATacute among all cancer types was estimated at 10% (SE = 0.02) and was higher for prostate (17%, SE = 0.07), head and neck (27%, SE = 0.09), and breast (16%, SE = 0.09) cancers. We identified 130 suggestive associated SNVs with rSTATacute (5.0 × 10‒8 < P < 1.0 × 10‒5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; effect size ‒0.17; P = 1.7 × 10‒7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified ‘RNA splicing via endonucleolytic cleavage and ligation’ (P = 5.1 × 10‒6, P = .079 corrected) as the top gene set associated with rSTATacute among all patients. In silico gene expression analysis showed that the genes associated with rSTATacute were statistically significantly up-regulated in skin (not sun exposed P = .004 corrected; sun exposed P = .026 corrected). Conclusions There is shared SNV-based heritability for acute radiation-induced toxicity across and within individual cancer sites. Future meta–genome-wide association studies among large radiation therapy patient cohorts are worthwhile to identify the common causal variants for acute radiotoxicity across cancer types.E.N. was supported by a scholarship for a PhD from the University of Groningen, Groningen, The Netherlands. T.D. is funded as an Academic Clinical Fellow by the National Institute for Health Research, UK. D.J.T. is supported by a grant from The Taylor Family Foundation and Cancer Research UK [C19941/A30286]. M.L.K.C. is supported by the National Medical Research Council Singapore Clinician Scientist Award (NMRC/CSA-INV/0027/2018), National Research Foundation Proton Competitive Research Program (NRF-CRP17-2017-05), Ministry of Education Tier 3 Academic Research Fund (MOE2016-T3-1-004), the Duke-NUS Oncology Academic Program Goh Foundation Proton Research Programme, NCCS Cancer Fund, and the Kua Hong Pak Head and Neck Cancer Research Programme. G.C.B. is supported by Cancer research UK RadNet Cambridge [C17918/A28870]. RADIOGEN research was supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds (INT20/00071, INT15/00070, INT17/00133, INT16/00154; PI19/01424; PI16/00046; PI13/02030; PI10/00164); by AECC grant PRYES211091VEGA and through the Autonomous Government of Galicia (Consolidation and structuring program: IN607B). C.N.A. and L.M.H.S. received funding from the Danish Cancer Society (grant R231-A14074-B2537). T.R. was funded by a National Institutes of Health Research (NIHR) Clinical Lectureship (CL 2017-11-002) and is supported by the NIHR Leicester Biomedical Research Centre. This publication presents independent research funded by the NIHR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. REQUITE received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement No. 601826. S.G.E. is supported by the government of Catalonia 2021SGR01112. L.D. was supported by the European Union Horizon 2020 research and innovation programs BRIDGES (grant No. 634935)

    Cell Senescence-Related Pathways Are Enriched in Breast Cancer Patients With Late Toxicity After Radiotherapy and Low Radiation-Induced Lymphocyte Apoptosis

    Get PDF
    Background: Radiation-induced late effects are a common cause of morbidity among cancer survivors. The biomarker with the best evidence as a predictive test of late reactions is the radiation-induced lymphocyte apoptosis (RILA) assay. We aimed to investigate the molecular basis underlying the distinctive RILA levels by using gene expression analysis in patients with and without late effects and in whom we had also first identified differences in RILA levels. Patients and Methods: Peripheral blood mononuclear cells of 10 patients with late severe skin complications and 10 patients without symptoms, selected from those receiving radiotherapy from 1993 to 2007, were mock-irradiated or irradiated with 8 Gy. The 48-h response was analyzed in parallel by RILA assay and gene expression profiling with Affymetrix microarrays. Irradiated and non-irradiated gene expression profiles were compared between both groups. Gene set enrichment analysis was performed to identify differentially expressed biological processes. Results: Although differentially expressed mRNAs did not reach a significant adjusted p-value between patients suffering and not suffering clinical toxicity, the enriched pathways indicated significant differences between the two groups, either in irradiated or non-irradiated cells. In basal conditions, the main differentially expressed pathways between the toxicity and non-toxicity groups were the transport of small molecules, interferon signaling, and transcription. After 8 Gy, the differences lay in pathways highly related to cell senescence like cell cycle/NF-κB, G-protein-coupled receptors, and interferon signaling. Conclusion: Patients at risk of developing late toxicity have a distinctive pathway signature driven by deregulation of immune and cell cycle pathways related to senescence, which in turn may underlie their low RILA phenotype

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    Clinical consequences of BRCA2 hypomorphism

    Get PDF
    Altres ajuts: Asociación Española contra el Cáncer (LABAE16020PORTT)Altres ajuts: Asociación Española contra el Cáncer (ERAPERMED2019-215)The tumor suppressor FANCD1/BRCA2 is crucial for DNA homologous recombination repair (HRR). BRCA2 biallelic pathogenic variants result in a severe form of Fanconi anemia (FA) syndrome, whereas monoallelic pathogenic variants cause mainly hereditary breast and ovarian cancer predisposition. For decades, the co-occurrence in trans with a clearly pathogenic variant led to assume that the other allele was benign. However, here we show a patient with biallelic BRCA2 (c.1813dup and c.7796 A > G) diagnosed at age 33 with FA after a hypertoxic reaction to chemotherapy during breast cancer treatment. After DNA damage, patient cells displayed intermediate chromosome fragility, reduced survival, cell cycle defects, and significantly decreased RAD51 foci formation. With a newly developed cell-based flow cytometric assay, we measured single BRCA2 allele contributions to HRR, and found that expression of the missense allele in a BRCA2 KO cellular background partially recovered HRR activity. Our data suggest that a hypomorphic BRCA2 allele retaining 37-54% of normal HRR function can prevent FA clinical phenotype, but not the early onset of breast cancer and severe hypersensitivity to chemotherapy

    A New Set of in Silico Tools to Support the Interpretation of ATM Missense Variants Using Graphical Analysis

    Full text link
    Establishing the pathogenic nature of variants in ATM, a gene associated with breast cancer and other hereditary cancers, is crucial for providing patients with adequate care. Unfortunately, achieving good variant classification is still difficult. To address this challenge, we extended the range of in silico tools with a series of graphical tools devised for the analysis of computational evidence by health care professionals. We propose a family of fast and easy-to-use graphical representations in which the impact of a variant is considered relative to other pathogenic and benign variants. To illustrate their value, the representations are applied to three problems in variant interpretation. The assessment of computational pathogenicity predictions showed that the graphics provide an intuitive view of pre-diction reliability, complementing and extending conventional numerical reliability indexes. When applied to variant of unknown significance populations, the representations shed light on the nature of these variants and can be used to prioritize variants of unknown significance for further studies. In a third application, the graphics were used to compare the two versions of the ATM-adapted American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines, obtaining valuable information on their relative virtues and weaknesses. Finally, a server [ATMision (ATM missense in silico interpretation online)] was generated for users to apply these representations in their variant interpretation problems, to check the ATM-adapted guidelines' criteria for computational evidence on their variant(s) and access different sources of information. (J Mol Diagn 2024, 26: 17-28; https://doi.org/10.1016/j.jmoldx.2023.09.009
    corecore