6 research outputs found

    The indirect basal ganglia pathway in dopamine D2 receptor-deficient mice

    Get PDF
    Recent pathophysiological models of basal ganglia function in Parkinson's disease predict that specific neurochemical changes in the indirect pathway would follow the lack of stimulation of D2 dopamine receptors. Post mortem studies of the basal ganglia in genetically modified mice lacking functional copies of the D2 dopamine receptor gene allowed us to test these predictions. When compared with their congenic N5 wild-type siblings, mice lacking D2 receptors show an increased expression of enkephalin messenger RNA in the striatum, and an increased activity and expression of cytochrome oxidase I in the subthalamic nucleus, as expected. In addition, D2 receptor-deficient mice display a reduced expression of glutamate decarboxylase-67 messenger RNA in the globus pallidus, as the basal ganglia model predicts. This reduction contrasts with the lack of change or increase in glutamate decarboxylase-67 messenger RNA expression found in animals depleted of dopamine after lesions of the mesostriatal dopaminergic system. Furthermore, D2 receptor-deficient mice show a significant decrease in substance P messenger RNA expression in the striatonigral neurons which form the direct pathway. Finally, glutamate decarboxylase-67 messenger RNA expression in the basal ganglia output nuclei was not affected by mutations in the D2 receptor gene, a fact that could probably be related to the absence of a parkinsonian locomotor phenotype in D2 receptor-deficient mice. In summary, these findings provide compelling evidence demonstrating that the lack of endogenous stimulation of D2 receptors is sufficient to produce subthalamic nucleus hyperactivity, as assessed by cytochrome oxidase I histochemistry and messenger RNA expression, and strongly suggest the existence of interactions between the basal ganglia direct and indirect pathways. (C) 2000 IBRO.Fil: Murer, Mario Gustavo. Inserm; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Dziewczapolski, G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Salin, P.. Centre National de la Recherche Scientifique; FranciaFil: Vila, M.. Inserm; FranciaFil: Tseng, Kuei y. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Ruberg, M.. Inserm; FranciaFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Kelly, M. A.. University of Oregon; Estados UnidosFil: Grandy, D. K.. University of Oregon; Estados UnidosFil: Low, M. J.. University of Oregon; Estados UnidosFil: Hirsch, E.. Inserm; FranciaFil: Raisman Vozari, Rita. Inserm; FranciaFil: Gershanik, Oscar Samuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Biológicas; Argentin

    Astrocytes contribute to gamma oscillations and recognition memory

    No full text
    Glial cells are an integral part of functional communication in the brain. Here we show that astrocytes contribute to the fast dynamics of neural circuits that underlie normal cognitive behaviors. In particular, we found that the selective expression of tetanus neurotoxin (TeNT) in astrocytes significantly reduced the duration of carbachol-induced gamma oscillations in hippocampal slices. These data prompted us to develop a novel transgenic mouse model, specifically with inducible tetanus toxin expression in astrocytes. In this in vivo model, we found evidence of a marked decrease in electroencephalographic (EEG) power in the gamma frequency range in awake-behaving mice, whereas neuronal synaptic activity remained intact. The reduction in cortical gamma oscillations was accompanied by impaired behavioral performance in the novel object recognition test, whereas other forms of memory, including working memory and fear conditioning, remained unchanged. These results support a key role for gamma oscillations in recognition memory. Both EEG alterations and behavioral deficits in novel object recognition were reversed by suppression of tetanus toxin expression. These data reveal an unexpected role for astrocytes as essential contributors to information processing and cognitive behavior
    corecore