131 research outputs found

    Anomalous quantum chaotic behavior in nanoelectromechanical structures

    Full text link
    It is predicted that for sufficiently strong electron-phonon coupling an anomalous quantum chaotic behavior develops in certain types of suspended electro-mechanical nanostructures, here comprised by a thin cylindrical quantum dot (billiard) on a suspended rectangular dielectric plate. The deformation potential and piezoelectric interactions are considered. As a result of the electron-phonon coupling between the two systems the spectral statistics of the electro-mechanic eigenenergies exhibit an anomalous behavior. If the center of the quantum dot is located at one of the symmetry axes of the rectangular plate, the energy level distributions correspond to the Gaussian Orthogonal Ensemble (GOE), otherwise they belong to the Gaussian Unitary Ensemble (GUE), even though the system is time-reversal invariant.Comment: 4 pages, pdf forma

    Esercizi di matematica finanziaria: regimi finanziari, rendite e ammortamenti

    Get PDF
    Quaderno di Didattic

    Dense conjugate initialization for deterministic PSO in applications: ORTHOinit+

    Get PDF
    This paper describes a class of novel initializations in Deterministic Particle Swarm Optimization (DPSO) for approximately solving costly unconstrained global optimization problems. The initializations are based on choosing specific dense initial positions and velocities for particles. These choices tend to induce in some sense orthogonality of particles’ trajectories, in the early iterations, in order to better explore the search space. Our proposal is inspired by both a theoretical analysis on a reformulation of PSO iteration, and by possible limits of the proposals reported in Campana et al. (2010); Campana et al. (2013). We explicitly show that, in comparison with other initializations from the literature, our initializations tend to scatter PSO particles, at least in the first iterations. The latter goal is obtained by imposing that the initial choice of particles’ position/velocity satisfies specific conjugacy conditions, with respect to a matrix depending on the parameters of PSO. In particular, by an appropriate condition on particles’ velocities, our initializations also resemble and partially extend a general paradigm in the literature of exact methods for derivative-free optimization. Moreover, we propose dense initializations for DPSO, so that the final approximate global solution obtained is possibly not too sparse, which might cause troubles in some applications. Numerical results, on both Portfolio Selection and Computational Fluid Dynamics problems, validate our theory and prove the effectiveness of our proposal, which applies also in case different neighborhood topologies are adopted in DPSO

    An evolutionary approach to preference disaggregation in a MURAME-based credit scoring problem

    Get PDF
    In this paper we use an evolutionary approach in order to infer the values of the parameters (weights of criteria, preference, indifference and veto thresholds) for developing the multicriteria method MURAME. According to the logic of preference disaggregation, the problem consists in finding the parameters that minimize the inconsistency between the model obtained with those parameters and that one connected with a given reference set of decisions revealed by the decision maker; in particular, two kinds of functions are considered in this analysis, representing a measure of the model inconsistency compared to the actual preferential system. In order to find a numerical solution of the mathematical programming problem involved, we adopt an evolutionary algorithm based on the Particle Swarm Optimization (PSO) method, which is an iterative heuristics grounded on swarm intelligence. The proposed approach is finally applied to a creditworthiness evaluation problem in order to test the methodology on a real data set provided by an Italian bank

    Resonant Production of Scalar Diquarks at the Next Generation Electron-Positron Colliders

    Full text link
    We investigate the potential of TESLA and JLC/NLC electron-positron linear collider designs to observe diquarks produced resonantly in processes involving hard photons.Comment: 14 pages, 8 figures, coded in RevTEX, uses epsfi
    • …
    corecore