369 research outputs found
Possible evolution of dim radio quiet neutron star 1E 1207.4-5209 based on a B-decay model
Dim radio-quiet neutron star (DRQNS) 1E 1207.4-5209 is one of the most
heavily examined isolated neutron stars. Wide absorption lines were observed in
its spectrum obtained by both XMM-Newton and Chandra X-ray satellites. These
absorption lines can be interpreted as a principal frequency centered at 0.7
keV and its harmonics at 1.4, 2.1 and possibly 2.8 keV. The principal line can
be formed by resonant proton cyclotron scattering leading to a magnetic field
which is two orders of magnitude larger than the perpendicular component of the
surface dipole magnetic field (B) found from the rotation period (P) and the
time rate of change in the rotation period (\.{P}) of 1E 1207.4-5209. Besides,
age of the supernova remnant (SNR) G296.5+10.0 which is physically connected to
1E 1207.4-5209 is two orders of magnitude smaller than the characteristic age
(=P/2\.{P}) of the neutron star. These huge differences between the
magnetic field values and the ages can be explained based on a B-decay model.
If the decay is assumed to be exponential, the characteristic decay time turns
out to be several thousand years which is three orders of magnitude smaller
than the characteristic decay time of radio pulsars represented in an earlier
work. The lack of detection of radio emission from DRQNSs and the lack of point
sources and pulsar wind nebulae in most of the observed SNRs can also be partly
explained by such a very rapid exponential decay. The large difference between
the characteristic decay times of DRQNSs and radio pulsars must be related to
the differences in the magnetic fields, equation of states and masses of these
isolated neutron stars.Comment: 13 pages, 1 figur
Influences of neutron star parameters on evolutions of different types of pulsar; evolutions of anomalous X-ray pulsars, soft gamma repeaters and dim isolated thermal neutron stars on the P-\.{P} diagram
Influences of the mass, moment of inertia, rotation, absence of stability in
the atmosphere and some other parameters of neutron stars on the evolution of
pulsars are examined. It is shown that the locations and evolutions of soft
gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the
period versus period derivative diagram can be explained adopting values of
B G for these objects. This approach gives the possibility to explain
many properties of different types of pulsar.Comment: 18 pages, 1 figur
Plasmon Resonance in а-С : Н Films Modified with Platinum Nanoclusters
Optical density spectra of amorphous diamond-like films of hydrogenated carbon modified with plati-num impurity (a-C : H) have been investigated. a-C : H films were prepared by the method of ion
plasma magnetron co-sputtering of graphite and platinum in argon-hydrogen atmosphere. Platinum con-tent in the films was varied from 0 to 9 at. %. In the optical spectra of a-C : H films with different Pt
content the peaks of resonance absorption in the range from 496 to 501 nm were found, whilst in the spec-trum of a-C : H films the absorption peak is absent. The appearance of these absorption peaks in a-C : H films is explained by resonance plasmon vibrations of free electrons in platinum nanocl usters.
The average diameter of the Pt nanoclusters was estimated using electromagnetic theory of Mie, and it is
~ 5 nm.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3638
An integrable discretization of KdV at large times
An "exact discretization" of the Schroedinger operator is considered and its
direct and inverse scattering problems are solved. It is shown that a
differential-difference nonlinear evolution equation depending on two arbitrary
constants can be solved by using this spectral transform and that for a special
choice of the constants it can be considered an integrable discretization of
the KdV equation at large times. An integrable difference-difference equation
is also obtained.Comment: 12 page
- …