32 research outputs found

    A Laminar Cortical Model for 3D Perception of Slanted and Curved Surfaces and of 2D Images: Developement, attention, and Bistability

    Full text link
    A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-98-1-0108); Defense Advanced Research Projects Agency and the Office of Naval Research (N0014-95-1-0409, N00014-01-1-0624, N00014-95-1-0657); National Science Foundation (IIS-97-20333

    Effects of Highlights on Gloss Perception

    Full text link
    The perception of a glossy surface in a static monochromatic image can occur when a bright highlight is embedded in a compatible context of shading and a bounding contour. Some images naturally give rise to the impression that a surface has a uniform reflectance, characteristic of a shiny object, even though the highlight may only cover a small portion of the surface. Nonetheless, an observer may adopt an attitude of scrutiny in viewing a glossy surface, whereby the impression of gloss is partial and nonuniform at image regions outside of a higlight. Using a rating scale and small probe points to indicate image locations, differential perception of gloss within a single object is investigate in the present study. Observers' gloss ratings are not uniform across the surface, but decrease as a function of distance from highlight. When, by design, the distance from a highlight is uncoupled from the luminance value at corresponding probe points, the decrease in rated gloss correlates more with the distance than with the luminance change. Experiments also indicate that gloss ratings change as a function of estimated surface distance, rather than as a function of image distance. Surface continuity affects gloss ratings, suggesting that apprehension of 3D surface structure is crucial for gloss perception.Air Force Office of Scientific Research (F49620-98-1-0108), Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409), National Science Foundation (IIS-97-20333); Office of Naval Research (N00014-95-1-0657, N00014-01-1-0624); Whitaker Foundation (RG-99-0186

    ReLU-QP: A GPU-Accelerated Quadratic Programming Solver for Model-Predictive Control

    Full text link
    We present ReLU-QP, a GPU-accelerated solver for quadratic programs (QPs) that is capable of solving high-dimensional control problems at real-time rates. ReLU-QP is derived by exactly reformulating the Alternating Direction Method of Multipliers (ADMM) algorithm for solving QPs as a deep, weight-tied neural network with rectified linear unit (ReLU) activations. This reformulation enables the deployment of ReLU-QP on GPUs using standard machine-learning toolboxes. We evaluate the performance of ReLU-QP across three model-predictive control (MPC) benchmarks: stabilizing random linear dynamical systems with control limits, balancing an Atlas humanoid robot on a single foot, and tracking whole-body reference trajectories on a quadruped equipped with a six-degree-of-freedom arm. These benchmarks indicate that ReLU-QP is competitive with state-of-the-art CPU-based solvers for small-to-medium-scale problems and offers order-of-magnitude speed improvements for larger-scale problems.Comment: submitted to ICRA 202

    Exploiting Data and Human Knowledge for Predicting Wildlife Poaching

    Full text link
    Poaching continues to be a significant threat to the conservation of wildlife and the associated ecosystem. Estimating and predicting where the poachers have committed or would commit crimes is essential to more effective allocation of patrolling resources. The real-world data in this domain is often sparse, noisy and incomplete, consisting of a small number of positive data (poaching signs), a large number of negative data with label uncertainty, and an even larger number of unlabeled data. Fortunately, domain experts such as rangers can provide complementary information about poaching activity patterns. However, this kind of human knowledge has rarely been used in previous approaches. In this paper, we contribute new solutions to the predictive analysis of poaching patterns by exploiting both very limited data and human knowledge. We propose an approach to elicit quantitative information from domain experts through a questionnaire built upon a clustering-based division of the conservation area. In addition, we propose algorithms that exploit qualitative and quantitative information provided by the domain experts to augment the dataset and improve learning. In collaboration with World Wild Fund for Nature, we show that incorporating human knowledge leads to better predictions in a conservation area in Northeastern China where the charismatic species is Siberian Tiger. The results show the importance of exploiting human knowledge when learning from limited data.Comment: COMPASS 201

    Rethinking Few-Shot Object Detection on a Multi-Domain Benchmark

    Full text link
    Most existing works on few-shot object detection (FSOD) focus on a setting where both pre-training and few-shot learning datasets are from a similar domain. However, few-shot algorithms are important in multiple domains; hence evaluation needs to reflect the broad applications. We propose a Multi-dOmain Few-Shot Object Detection (MoFSOD) benchmark consisting of 10 datasets from a wide range of domains to evaluate FSOD algorithms. We comprehensively analyze the impacts of freezing layers, different architectures, and different pre-training datasets on FSOD performance. Our empirical results show several key factors that have not been explored in previous works: 1) contrary to previous belief, on a multi-domain benchmark, fine-tuning (FT) is a strong baseline for FSOD, performing on par or better than the state-of-the-art (SOTA) algorithms; 2) utilizing FT as the baseline allows us to explore multiple architectures, and we found them to have a significant impact on down-stream few-shot tasks, even with similar pre-training performances; 3) by decoupling pre-training and few-shot learning, MoFSOD allows us to explore the impact of different pre-training datasets, and the right choice can boost the performance of the down-stream tasks significantly. Based on these findings, we list possible avenues of investigation for improving FSOD performance and propose two simple modifications to existing algorithms that lead to SOTA performance on the MoFSOD benchmark. The code is available at https://github.com/amazon-research/few-shot-object-detection-benchmark.Comment: Accepted at ECCV 202
    corecore