20 research outputs found

    A Rating-Based Integrated Recommendation Framework with Improved Collaborative Filtering Approaches

    Get PDF
    Collaborative filtering (CF) approach is successfully applied in the rating prediction of personal recommendation. But individual information source is leveraged in many of them, i.e., the information derived from single perspective is used in the user-item matrix for recommendation, such as user-based CF method mainly utilizing the information of user view, item-based CF method mainly exploiting the information of item view. In this paper, in order to take full advantage of multiple information sources embedded in user-item rating matrix, we proposed a rating-based integrated recommendation framework of CF approaches to improve the rating prediction accuracy. Firstly, as for the sparsity of the conventional item-based CF method, we improved it by fusing the inner similarity and outer similarity based on the local sparsity factor. Meanwhile, we also proposed the improved user-based CF method in line with the user-item-interest model (UIIM) by preliminary rating. Second, we put forward a background method called user-item-based improved CF (UIBCF-I), which utilizes the information source of both similar items and similar users, to smooth itembased and user-based CF methods. Lastly, we leveraged the three information sources and fused their corresponding ratings into an Integrated CF model (INTE-CF). Experiments demonstrate that the proposed rating-based INTE-CF indeed improves the prediction accuracy and has strong robustness and low sensitivity to sparsity of dataset by comparisons to other mainstream CF approaches

    Sparse Data Recommendation by Fusing Continuous Imputation Denoising Autoencoder and Neural Matrix Factorization

    No full text
    In recent years, although deep neural networks have yielded immense success in solving various recognition and classification problems, the exploration of deep neural networks in recommender systems has received relatively less attention. Meanwhile, the inherent sparsity of data is still a challenging problem for deep neural networks. In this paper, firstly, we propose a new CIDAE (Continuous Imputation Denoising Autoencoder) model based on the Denoising Autoencoder to alleviate the problem of data sparsity. CIDAE performs regular continuous imputation on the missing parts of the original data and trains the imputed data as the desired output. Then, we optimize the existing advanced NeuMF (Neural Matrix Factorization) model, which combines matrix factorization and a multi-layer perceptron. By optimizing the training process of NeuMF, we improve the accuracy and robustness of NeuMF. Finally, this paper fuses CIDAE and optimized NeuMF with reference to the idea of ensemble learning. We name the fused model the I-NMF (Imputation-Neural Matrix Factorization) model. I-NMF can not only alleviate the problem of data sparsity, but also fully exploit the ability of deep neural networks to learn potential features. Our experimental results prove that I-NMF performs better than the state-of-the-art methods for the public MovieLens datasets

    Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method

    No full text
    Abstract Background Human cancers are complex ecosystems composed of cells with distinct molecular signatures. Such intratumoral heterogeneity poses a major challenge to cancer diagnosis and treatment. Recent advancements of single-cell techniques such as scRNA-seq have brought unprecedented insights into cellular heterogeneity. Subsequently, a challenging computational problem is to cluster high dimensional noisy datasets with substantially fewer cells than the number of genes. Methods In this paper, we introduced a consensus clustering framework conCluster, for cancer subtype identification from single-cell RNA-seq data. Using an ensemble strategy, conCluster fuses multiple basic partitions to consensus clusters. Results Applied to real cancer scRNA-seq datasets, conCluster can more accurately detect cancer subtypes than the widely used scRNA-seq clustering methods. Further, we conducted co-expression network analysis for the identified melanoma subtypes. Conclusions Our analysis demonstrates that these subtypes exhibit distinct gene co-expression networks and significant gene sets with different functional enrichment

    QoS-aware dynamic composition of web services using numerical temporal planning

    Full text link

    Domain Adaptation with Data Uncertainty Measure Based on Evidence Theory

    No full text
    Domain adaptation aims to learn a classifier for a target domain task by using related labeled data from the source domain. Because source domain data and target domain task may be mismatched, there is an uncertainty of source domain data with respect to the target domain task. Ignoring the uncertainty may lead to models with unreliable and suboptimal classification results for the target domain task. However, most previous works focus on reducing the gap in data distribution between the source and target domains. They do not consider the uncertainty of source domain data about the target domain task and cannot apply the uncertainty to learn an adaptive classifier. Aimed at this problem, we revisit the domain adaptation from source domain data uncertainty based on evidence theory and thereby devise an adaptive classifier with the uncertainty measure. Based on evidence theory, we first design an evidence net to estimate the uncertainty of source domain data about the target domain task. Second, we design a general loss function with the uncertainty measure for the adaptive classifier and extend the loss function to support vector machine. Finally, numerical experiments on simulation datasets and real-world applications are given to comprehensively demonstrate the effectiveness of the adaptive classifier with the uncertainty measure

    QoS-Aware Dynamic Composition of Web Services Using Numerical Temporal Planning

    No full text
    corecore