34,806 research outputs found

    A strong negative correlation between radio loudness RUVR_{\rm UV} and optical-to-X-ray spectral index Ξ±ox\alpha_{\rm ox} in low-luminosity AGNs

    Full text link
    It has been argued for years that the accretion mode changes from bright active galactic nuclei (AGNs) to low-luminosity AGNs (LLAGNs) at a rough dividing point of bolometric Eddington ratio λ∼10βˆ’2\lambda \sim 10^{-2}. In this work, we strengthen this scenario through investigation of the relationship between the radio loudness RUVR_{\rm UV} and the optical-to-X-ray spectral index Ξ±ox\alpha_{\rm ox} in LLAGNs with 10βˆ’6≲λ≲10βˆ’310^{-6} \lesssim \lambda \lesssim 10^{-3}. We compile from literature a sample of 32 LLAGNs, consisting 18 LINERs and 14 low Eddington ratio Seyfert galaxies, and observe a strong negative RUVR_{\rm UV}--Ξ±ox\alpha_{\rm ox} relationship, with large scatter in both RUVR_{\rm UV} and Ξ±ox\alpha_{\rm ox}. We further demonstrate that this negative correlation, and the additional two negative relationships reported in literature (RUVR_{\rm UV}--Ξ»\lambda and Ξ±ox\alpha_{\rm ox}--Ξ»\lambda correlations), can be understood consistently and comprehensively under the truncated accretion--jet model, the model that has been applied successfully applied to LLAGNs. We argue that the scatter in the observations are (mainly) due to the spread in the viscosity parameter Ξ±\alpha of a hot accretion flow, a parameter that potentially can serve as a diagnose of the strength and/or configuration of magnetic fields in accretion flows.Comment: 8 pages, 3 figures, 2 tables. Accepted by MNRA

    Assembly Bias of Dwarf-sized Dark Matter Haloes

    Full text link
    Previous studies indicate that assembly bias effects are stronger for lower mass dark matter haloes. Here we make use of high resolution re-simulations of rich clusters and their surroundings from the Phoenix Project and a large volume cosmological simulation, the Millennium-II run, to quantify assembly bias effects on dwarf-sized dark matter haloes. We find that, in the regions around massive clusters, dwarf-sized haloes ([10^9,10^{11}]\ms) form earlier (Ξ”z∼2\Delta z \sim 2 in redshift) and possess larger VmaxV_{\rm max} (∼20\sim20%) than the field galaxies. We find that this environmental dependence is largely caused by tidal interactions between the ejected haloes and their former hosts, while other large scale effects are less important. Finally we assess the effects of assembly bias on dwarf galaxy formation with a sophisticated semi-analytical galaxy formation model. We find that the dwarf galaxies near massive clusters tend to be redder (Ξ”(uβˆ’r)=0.5\Delta(u-r) = 0.5) and have three times as much stellar mass compared to the field galaxies with the same halo mass. These features should be seen with observational data.Comment: 8 pages, 8 figures, accepted by MNRA

    The analysis of the charmonium-like states Xβˆ—(3860)X^{*}(3860),X(3872)X(3872), X(3915)X(3915), X(3930)X(3930) and X(3940)X(3940) according to its strong decay behaviors

    Full text link
    Inspired by the newly observed state Xβˆ—(3860)X^{*}(3860), we analyze the strong decay behaviors of some charmonium-like states Xβˆ—(3860)X^{*}(3860),X(3872)X(3872), X(3915)X(3915), X(3930)X(3930) and X(3940)X(3940) by the 3P0^{3}P_{0} model. We carry out our work based on the hypothesis that these states are all being the charmonium systems. Our analysis indicates that 0++0^{++} charmonium state can be a good candidate for Xβˆ—(3860)X^{*}(3860) and 1++1^{++} state is the possible assignment for X(3872)X(3872). Considering as the 31S03^{1}S_{0} state, the decay behavior of X(3940)X(3940) is inconsistent with the experimental data. So, we can not assign X(3940)X(3940) as the 31S03^{1}S_{0} charmonium state by present work. Besides, our analysis imply that it is reasonable to assign X(3915)X(3915) and X(3930)X(3930) to be the same state, 2++2^{++}. However, combining our analysis with that of Zhou~\cite{ZhouZY}, we speculate that X(3915)X(3915)/X(3930)X(3930) might not be a pure ccβ€Ύc\overline{c} systems

    Strong coupling constants and radiative decays of the heavy tensor mesons

    Full text link
    In this article, we analyze tensor-vector-pseudoscalar(TVP) type of vertices D2βˆ—+D+ρD_{2}^{*+}D^{+}\rho, D2βˆ—0D0ρD_{2}^{*0}D^{0}\rho, D2βˆ—+D+Ο‰D_{2}^{*+}D^{+}\omega, D2βˆ—0D0Ο‰D_{2}^{*0}D^{0}\omega, B2βˆ—+B+ρB_{2}^{*+}B^{+}\rho, B2βˆ—0B0ρB_{2}^{*0}B^{0}\rho, B2βˆ—+B+Ο‰B_{2}^{*+}B^{+}\omega, B2βˆ—0B0Ο‰B_{2}^{*0}B^{0}\omega, Bs2βˆ—BsΟ•B_{s2}^{*}B_{s}\phi and Ds2βˆ—DsΟ•D_{s2}^{*}D_{s}\phi, in the frame work of three point QCD sum rules. According to these analysis, we calculate their strong form factors which are used to fit into analytical functions of Q2Q^{2}. Then, we obtain the strong coupling constants by extrapolating these strong form factors into deep time-like regions. As an application of this work, the coupling constants for radiative decays of these heavy tensor mesons are also calculated at the point of Q2=0Q^{2}=0. With these coupling constants, we finally calculate the radiative decay widths of these tensor mesons.Comment: arXiv admin note: text overlap with arXiv:1810.0597
    • …
    corecore