2,089 research outputs found

    Comparative performance of squeeze film air journal bearings made of aluminium and copper

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Copyright @ 2012 The Authors - The article can be accessed from the links below.This article has been made available through the Brunel Open Access Publishing Fund.Two tubular squeeze film journal bearings, made from Al 2024 T3 and Cu C101, were excited by driving the single-layer piezoelectric actuators at a 75-V AC with a 75-V DC offset. The input excitation frequencies were coincident with the 13th modal frequency, at 16.32 and 12.18 kHz for the respective Al and Cu bearings, in order to produce a ‘triangular’ modal shape. The paper also provided a CFX model, used to solve the Reynolds equation and the equation of motion, to explain the squeeze film effect of an oscillating plate with pressure end leakage. The dynamic characteristics of both bearings were studied in ANSYS and then validated by experiments with respect to their squeeze film thickness and load-carrying capacity. It was observed that whilst both bearings did levitate a load when excited at mode 13, the Al bearing showed a better floating performance than Cu bearing. This is due to the fact that the Al bearing had a higher modal frequency and a greater amplitude response than the Cu bearing.This article is made available through the Brunel Open Access Publishing Fund

    Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions

    Get PDF
    Background: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome- wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. Methods: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. Results: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. Conclusions: Plant-RRBS offers high-throughput and broad, genome- dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations

    Fabrication and photoluminescent properties of Tb3+ doped carbon nanodots

    Get PDF
    Abstract Carbon nanodots (CNDs) doped with Tb ions were synthesized using different synthetic routes: hydrothermal treatment of a solution containing carbon source (sodium dextran sulfate) and TbCl3; mixing of CNDs and TbCl3 solutions; freezing-induced loading of Tb and carbon-containing source into pores of CaCO3 microparticles followed by hydrothermal treatment. Binding of Tb ions to CNDs (Tb-CND coupling) was confirmed using size-exclusion chromatography and manifested itself through a decrease of the Tb photoluminescence lifetime signal. The shortest Tb photoluminescence lifetime was observed for samples obtained by hydrothermal synthesis of CaCO3 microparticles where Tb and carbon source were loaded into pores via the freezing-induced process. The same system displays an increase of Tb photoluminescence via energy transfer with excitation at 320–340 nm. Based on the obtained results, freezing-induced loading of cations into CNDs using porous CaCO3 microparticles as reactors is proposed to be a versatile route for the introduction of active components into CNDs. The obtained CNDs with long-lived emission may be used for time-resolved imaging and visualization in living biological samples where time-resolved and long-lived luminescence microscopy is required

    Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    Get PDF
    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψ′→π+π−J/ψ(J/ψ→γppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ′\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861−13+6(stat)−26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
    • …
    corecore