8 research outputs found

    The short-time behavior of kinetic spherical model with long-ranged interactions

    Full text link
    The kinetic spherical model with long-ranged interactions and an arbitrary initial order m_{0} quenched from a very high temperature to T < T_{c} is solved. In the short-time regime, the bulk order increases with a power law in both the critical and phase-ordering dynamics. To the latter dynamics, a power law for the relative order m_{r} ~ -t^{-k} is found in the intermediate time-regime. The short-time scaling relation of small m_{0} are generalized to an arbitrary m_{0} and all the time larger than t_{mic}. The characteristic functions ϕ(b,m0)\phi (b,m_{0}) for the scaling of m_{0} and ϵ(b,T′)\epsilon (b,T') for T'=T/T_{c} are obtained. The crossover between scaling regimes is discussed in detail.Comment: 22 pages, 3 figure

    Method for Extracting the Glueball Wave Function

    Get PDF
    We describe a nonperturbative method for calculating the QCD vacuum and glueball wave functions, based on an eigenvalue equation approach to Hamiltonian lattice gauge theory. Therefore, one can obtain more physical information than the conventional simulation methods. For simplicity, we take the 2+1 dimensional U(1) model as an example. The generalization of this method to 3+1 dimensional QCD is straightforward.Comment: 3 pages, Latex. Presented at Lattice 97: 15th International Symposium on Lattice Field Theory, Edinburgh, Scotland, 22-26 Jul 1997, to appear in Nucl. Phys. B(Proc. Suppl.

    Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes

    Get PDF
    Soil priming is a microbial-driven process, which determines key soil–climate feedbacks in response to fresh carbon inputs. Despite its importance, the microbial traits behind this process are largely undetermined. Knowledge of the role of these traits is integral to advance our understanding of how soil microbes regulate carbon (C) emissions in forests, which support the largest soil carbon stocks globally. Using metagenomic sequencing and C-glucose, we provide unprecedented evidence that microbial traits explain a unique portion of the variation in soil priming across forest biomes from tropical to cold temperature regions. We show that microbial functional profiles associated with the degradation of labile C, especially rapid simple sugar metabolism, drive soil priming in different forests. Genes involved in the degradation of lignin and aromatic compounds were negatively associated with priming effects in temperate forests, whereas the highest level of soil priming was associated with β-glucosidase genes in tropical/subtropical forests. Moreover, we reconstructed, for the first time, 42 whole bacterial genomes associated with the soil priming effect and found that these organisms support important gene machinery involved in priming effect. Collectively, our work demonstrates the importance of microbial traits to explain soil priming across forest biomes and suggests that rapid carbon metabolism is responsible for priming effects in forests. This knowledge is important because it advances our understanding on the microbial mechanisms mediating soil–climate feedbacks at a continental scale.This work were financially supported by the National Natural Science Foundation of China (41907031), the Chinese Academy of Sciences “Light of West China” Program for Introduced Talent in the West, the National Natural Science Foundation of China (31570440, 31270484), the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province, China (2020KWZ-010), the 2021 First Funds for Central Government to Guide Local Science and Technology Development in Qinghai Province (2021ZY002), the i-LINK +2018 (LINKA20069) from CSIC, and a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I

    Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    Get PDF
    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static quark potential, the string tension and the low-lying "glueball" spectrum.The Euclidean string tension and mass gap decrease exponentially at weakcoupling in excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure
    corecore