90,808 research outputs found

    From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality

    Full text link
    By means of Dirac procedure, we re-examine Yang's quantized space-time model, its relation to Snyder's model, the de Sitter special relativity and their UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a complete Yang model at both classical and quantum level can be presented and there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge

    Wormhole Effect in a Strong Topological Insulator

    Full text link
    An infinitely thin solenoid carrying magnetic flux Phi (a `Dirac string') inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Phi=hc/2e. These modes are spin-filtered and represent a distinct bulk manifestation of the topologically non-trivial insulator. We establish this `wormhole' effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.Comment: 4 pages, 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    Theory of quasiparticle interference on the surface of a strong topological insulator

    Full text link
    Electrons on the surface of a strong topological insulator, such as Bi2Te3 or Bi1-xSnx, form a topologically protected helical liquid whose excitation spectrum contains an odd number of massless Dirac fermions. A theoretical survey and classification is given of the universal features, observable by the ordinary and spin-polarized scanning tunneling spectroscopy, in the interference patterns resulting from the quasiparticle scattering by magnetic and non-magnetic impurities in such a helical liquid. Our results confirm the absence of backscattering from non-magnetic impurities observed in recent experiments and predict new interference features, uniquely characteristic of the helical liquid, when the scatterers are magnetic.Comment: 4 pages, 2 figures, 1 table. Version to appear in PRB/RC; Typos correcte

    Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals

    Get PDF
    We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here investigate the so-called noncritical SHG case, where no phase matching can be achieved but as a compensation the largest quadratic nonlinearities are exploited. A self-defocusing temporal soliton can be excited if the cascading nonlinearity is larger than the competing material self-focusing nonlinearity, and we define a suitable figure of merit to screen a wide range of mid-IR dielectric and semiconductor materials with large effective second-order nonlinearities deffd_{\rm eff}. The best candidates have simultaneously a large bandgap and a large deffd_{\rm eff}. We show selected realistic numerical examples using one of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0\mic is achieved, and at the same time a 3-cycle dispersive wave at 5.0\mic is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form spanning the near-IR to the end of the mid-IR (nearly 4 octaves).Comment: submitted to Optics Materials Express special issue on mid-IR photonic

    \Lambda_b \to \Lambda_c P(V) Nonleptonic Weak Decays

    Full text link
    The two-body nonleptonic weak decays of \Lambda_b \to \Lambda_c P(V) (P and V represent pseudoscalar and vector mesons respectively) are analyzed in two models, one is the Bethe-Salpeter (B-S) model and the other is the hadronic wave function model. The calculations are carried out in the factorization approach. The obtained results are compared with other model calculations.Comment: 18 pages, Late

    Topological Anderson Insulator in Three Dimensions

    Get PDF
    Disorder, ubiquitously present in solids, is normally detrimental to the stability of ordered states of matter. In this letter we demonstrate that not only is the physics of a strong topological insulator robust to disorder but, remarkably, under certain conditions disorder can become fundamentally responsible for its existence. We show that disorder, when sufficiently strong, can transform an ordinary metal with strong spin-orbit coupling into a strong topological `Anderson' insulator, a new topological phase of quantum matter in three dimensions.Comment: 5 pages, 2 figures. For related work and info visit http://www.physics.ubc.ca/~franz
    • …
    corecore