176 research outputs found

    Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling

    Get PDF
    The activation of phospholipase D (PLD) produces phosphatidic acid (PA), whereas plant sphingosine kinase (SPHK) phosphorylates long-chain bases to generate long-chain base-1-phosphates such as phytosphingosine-1-phosphate (phyto-S1P). PA and phyto-S1P have been identified as lipid messengers. Recent studies have shown that PA interacts directly with SPHKs in Arabidopsis, and that the interaction promotes SPHK activity. However, SPHK and phyto-S1P act upstream of PLDα1 and PA in the stomatal response to abscisic acid (ABA). These findings indicate that SPHK/phyto-S1P and PLD/PA are co-dependent in the amplification of lipid messengers, and that crosstalk between the sphingolipid- and phospholipid-mediated signaling pathways may play important roles in plant stress signaling

    Pupillary response to moving stimuli of different speeds

    Get PDF
    Purpose: To investigate the pupillary response to moving stimuli of different speeds and the influence of different luminance environments. Methods: Twenty-eight participants with normal or corrected-to-normal vision were included. The participants were required to track moving optotypes horizontally, and their pupils were videoed with an infrared camera. Stimuli of different speeds were presented in different luminance environments. Results: Experiment 1 demonstrated that the motion stimuli induced pupil dilation in a speed-dependent pattern. The pupil dilation increased as the speed increased, and the pupil dilation gradually increased, then reached saturation. Experiment 2 showed that a stimulus targeting the rod- or cone-mediated pathway could induce pupil dilation in a similar speed-dependent pattern. The absolute but not relative pupil dilation in the cone paradigm was significantly larger than that in the rod paradigm. As the speed increased, the pupil dilation in the cone paradigm reached saturation at speed slower than the rod paradigm. Conclusions: Motion stimuli induced pupil dilation in a speed-dependent pattern, and as the motion speed increased, the pupil dilation gradually increased and reached saturation. And the speed required to reach saturation in the cone paradigm was slower than in the rod paradigm

    Circulating MicroRNA Expression Profiles in Patients with Stable and Unstable Angina

    Get PDF
    OBJECTIVES: High incidence and case fatality of unstable angina (UA) is, to a large extent, a consequence of the lack of highly sensitive and specific non-invasive markers. Circulating microRNAs (miRNAs) have been widely recommended as potential biomarkers for numerous diseases. In the present study, we characterized distinctive miRNA expression profiles in patients with stable angina (SA), UA, and normal coronary arteries (NCA), and identified promising candidates for UA diagnosis. METHODS: Serum was collected from patients with SA, UA, and NCA who visited the Department of Cardiovascular Diseases of the Meizhou People’s Hospital. Small RNA sequencing was carried out on an Illumina HiSeq 2500 platform. miRNA expression in different groups of patients was profiled and then confirmed based on that in an independent set of patients. Functions of differentially expressed miRNAs were predicted using gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS: Our results indicated that circulating miRNA expression profiles differed between SA, UA, and NCA patients. A total of 36 and 161 miRNAs were dysregulated in SA and UA patients, respectively. miRNA expression was validated by reverse transcription quantitative polymerase chain reaction. CONCLUSION: The results suggest that circulating miRNAs are potential biomarkers of UA

    Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in \u3ci\u3eArabidopsis\u3c/i\u3e

    Get PDF
    Background: Sphingosine kinase (SPHK) and phospholipaseD(PLD) produce different lipid mediators involved in abscisic acid (ABA) response. Results: Ablation of SPHKs and PLDα1 attenuates ABA-induced production of LCBPs and PA. Phyto-S1P closes stomata in sphk1, sphk2, but not in pldα1, whereas PA closes stomata in all mutants. Conclusion: SPHK acts upstream of PLDα1, whereas PLDα1 promotes SPHK. Significance: The roles of lipid messengers in the ABA signaling pathway are clarified

    Structure, morphology and magnetic properties of flowerlike gamma-Fe2O3@NiO core/shell nanocomposites synthesized from different precursor concentrations

    Get PDF
    The flowerlike gamma-Fe2O3@NiO core/shell nanocomposites are synthesized by the two-step method. Their structure and morphology can be controlled by tuning the precursor concentration. Microstructural analysis reveals that all the samples have distinct core/shell structure without impurities, and the NiO shells are built of many irregular nanosheets which enclose the surface of gamma-Fe2O3 core. As the precursor concentration decreases (i.e., more NiO content), the NiO grain grows significantly, and the thickness of NiO shells increases. Magnetic experiments are performed to analyze the influences of different microstructures on magnetic properties of samples and we have the following two results. First, at 5 K, along with increasing thickness of NiO shell, the saturation magnetization increases, while the residual magnetization decreases slightly. Second, the hysteresis loops under cooling field demonstrate that the value of exchange bias effect fluctuates between 13 Oe and 17 Oe. This is mainly because of the NiO shell that (i) is composed of irregular nanosheets with disordered orientations, and (ii) does not form a complete coating around gamma-Fe2O3 core

    Editosome Accessory Factors KREPB9 and KREPB10 in Trypanosoma brucei

    Get PDF
    Multiprotein complexes, called editosomes, catalyze the uridine insertion and deletion RNA editing that forms translatable mitochondrial mRNAs in kinetoplastid parasites. We have identified here two new U1-like zinc finger proteins that associate with editosomes and have shown that they are related to KREPB6, KREPB7, and KREPB8, and thus we have named them Kinetoplastid RNA Editing Proteins, KREPB9 and KREPB10. They are conserved and syntenic in trypanosomatids although KREPB10 is absent in Trypanosoma vivax and both are absent in Leishmania. Tandem affinity purification (TAP)-tagged KREPB9 and KREPB10 incorporate into ∼20S editosomes and/or subcomplexes thereof and preferentially associate with deletion subcomplexes, as do KREPB6, KREPB7, and KREPB8. KREPB10 also associates with editosomes that are isolated via a chimeric endonuclease, KREN1 in KREPB8 RNA interference (RNAi) cells, or MEAT1. The purified complexes have precleaved editing activities and endonuclease cleavage activity that appears to leave a 5′ OH on the 3′ product. RNAi knockdowns did not affect growth but resulted in relative reductions of both edited and unedited mitochondrial mRNAs. The similarity of KREPB9 and KREPB10 to KREPB6, KREPB7, and KREPB8 suggests they may be accessory factors that affect editing endonuclease activity and as a consequence may affect mitochondrial mRNA stability. KREPB9 and KREPB10, along with KREPB6, KREPB7, and KREPB8, may enable the endonucleases to discriminate among and accurately cleave hundreds of different editing sites and may be involved in the control of differential editing during the life cycle of T. brucei

    Distributed Algorithms on Exact Personalized PageRank

    Get PDF
    As one of the most well known graph computation problems, Personalized PageRank is an effective approach for computing the similarity score between two nodes, and it has been widely used in various applications, such as link prediction and recommendation. Due to the high computational cost and space cost of computing the exact Personalized PageRank Vector (PPV), most existing studies compute PPV approximately. In this paper, we propose novel and efficient distributed algorithms that compute PPV exactly based on graph partitioning on a general coordinator-based share-nothing distributed computing platform. Our algorithms takes three aspects into account: the load balance, the communication cost, and the computation cost of each machine. The proposed algorithms only require one time of communication between each machine and the coordinator at query time. The communication cost is bounded, and the work load on each machine is balanced. Comprehensive experiments conducted on five real datasets demonstrate the efficiency and the scalability of our proposed methods.Peer reviewe
    corecore