7,811 research outputs found

    Amplification of Molecular Traffic Control in catalytic grains with novel channel topology design

    Get PDF
    We investigate the conditions for reactivity enhancement of catalytic processes in porous solids by use of molecular traffic control (MTC). With dynamic Monte-Carlo simulations and continuous-time master equation theory applied to the high concentration regime we obtain a quantitative description of the MTC effect for a network of intersecting single-file channels in a wide range of grain parameters and for optimal external operating conditions. Implementing the concept of MTC in models with specially designed alternating bimodal channels we find the efficiency ratio (compared with a topologically and structurally similar reference system without MTC) to be enhanced with increasing grain diameter, a property verified for the first time for an MTC system. Even for short intersection channels, MTC leads to a reactivity enhancement of up to approximately 65%. This suggests that MTC may significantly enhance the efficiency of a catalytic process for small as well as large porous particles with a suitably chosen binary channel topology.Comment: 15 pages, 12 figure

    Entangling power of permutation invariant quantum states

    Get PDF
    We investigate the von Neumann entanglement entropy as function of the size of a subsystem for permutation invariant ground states in models with finite number of states per site, e.g., in quantum spin models. We demonstrate that the entanglement entropy of nn sites in a system of length LL generically grows as σlog⁥2[2πen(L−n)/L]+C\sigma\log_{2}[2\pi en(L-n)/L]+C, where σ\sigma is the on-site spin and CC is a function depending only on magnetization.Comment: 6 pages, 2 figure

    Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk

    Get PDF
    We consider a discrete-time random walk where the random increment at time step tt depends on the full history of the process. We calculate exactly the mean and variance of the position and discuss its dependence on the initial condition and on the memory parameter pp. At a critical value pc(1)=1/2p_c^{(1)}=1/2 where memory effects vanish there is a transition from a weakly localized regime (where the walker returns to its starting point) to an escape regime. Inside the escape regime there is a second critical value where the random walk becomes superdiffusive. The probability distribution is shown to be governed by a non-Markovian Fokker-Planck equation with hopping rates that depend both on time and on the starting position of the walk. On large scales the memory organizes itself into an effective harmonic oscillator potential for the random walker with a time-dependent spring constant k=(2p−1)/tk = (2p-1)/t. The solution of this problem is a Gaussian distribution with time-dependent mean and variance which both depend on the initiation of the process.Comment: 10 page

    Shocks in the asymmetric exclusion process with internal degree of freedom

    Get PDF
    We determine all families of Markovian three-states lattice gases with pair interaction and a single local conservation law. One such family of models is an asymmetric exclusion process where particles exist in two different nonconserved states. We derive conditions on the transition rates between the two states such that the shock has a particularly simple structure with minimal intrinsic shock width and random walk dynamics. We calculate the drift velocity and diffusion coefficient of the shock.Comment: 26 pages, 1 figur

    Beyond-brand effect of television food advertisements on food choice in children: The effects of weight status

    Get PDF
    Copyright © The Authors 2007.Objective - To investigate the effect of television food advertising on children’s food intake, specifically whether childhood obesity is related to a greater susceptibility to food promotion. Design - The study was a within-subject, counterbalanced design. The children were tested on two occasions separated by two weeks. One condition involved the children viewing food advertisements followed by a cartoon, in the other condition the children viewed non-food adverts followed by the same cartoon. Following the cartoon, their food intake and choice was assessed in a standard paradigm. Setting - The study was conducted in Liverpool, UK. Subjects - Fifty-nine children (32 male, 27 female) aged 9–11 years were recruited from a UK school to participate in the study. Thirty-three children were normal-weight (NW), 15 overweight (OW) and 11 obese (OB). Results - Exposure to food adverts produced substantial and significant increases in energy intake in all children (P < 0·001). The increase in intake was largest in the obese children (P = 0·04). All children increased their consumption of high-fat and/or sweet energy-dense snacks in response to the adverts (P < 0·001). In the food advert condition, total intake and the intake of these specific snack items correlated with the children’s modified age- and gender-specific body mass index score. Conclusions - These data suggest that obese and overweight children are indeed more responsive to food promotion, which specifically stimulates the intake of energy-dense snacks.University of Liverpoo

    Formal Modeling and Analysis for Interactive Hybrid Systems

    Get PDF
    An effective strategy for discovering certain kinds of automation surprise and other problems in interactive systems is to build models of the participating (automated and human) agents and then explore all reachable states of the composed system looking for divergences between mental states and those of the automation. Various kinds of model checking provide ways to automate this approach when the agents can be modeled as discrete automata. But when some of the agents are continuous dynamical systems (e.g., airplanes), the composed model is a hybrid (i.e., mixed continuous and discrete) system and these are notoriously hard to analyze. We describe an approach for very abstract modeling of hybrid systems using relational approximations and their automated analysis using infinite bounded model checking supported by an SMT solver. When counterexamples are found, we describe how additional constraints can be supplied to direct counterexamples toward plausible scenarios that can be confirmed in high-fidelity simulation. The approach is illustrated though application to a known (and now corrected) human-automation interaction problem in Airbus aircraft

    Silicon-organic hybrid electro-optical devices

    Get PDF
    Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices

    Time-dependent correlation functions in a one-dimensional asymmetric exclusion process

    Full text link
    We study a one-dimensional anisotropic exclusion process describing particles injected at the origin, moving to the right on a chain of LL sites and being removed at the (right) boundary. We construct the steady state and compute the density profile, exact expressions for all equal-time n-point density correlation functions and the time-dependent two-point function in the steady state as functions of the injection and absorption rates. We determine the phase diagram of the model and compare our results with predictions from dynamical scaling and discuss some conjectures for other exclusion models.Comment: LATEX-file, 32 pages, Weizmann preprint WIS/93/01/Jan-P
    • 

    corecore