5 research outputs found
Identification of volatiles generated by potato tubers (Solanum tuberosum CV : Maris Piper) infected by erwinia carotovora, bacillus polymyxa and arthrobacter sp
Bacteria were isolated from internal tissues of surface sterilized healthy tubers of Solanum tuberosum cv. Maris Piper (8 different isolates) and from tubers inoculated with Erwinia carotovora ssp. carotovora showing soft-rot symptoms (3 different isolates), and identified by fatty acid profiling. Bacillus polymyxa and an Arthrobacter sp. were isolated from both sources, E. carotovora only from the soft-rotted tubers. The volatile organic compounds (VOCs) generated by tubers inoculated with E. carotovora, B. polymyxa and the Arthrobacter sp. were identified. Inoculated tubers of cv. Maris Piper were incubated under controlled humidity (95% relative humidity) and temperature (10°C) to simulate typical storage conditions. B. polymyxa and Arthrobacter sp. did not cause symptoms, whilst E. carotovora caused limited soft-rot infections after 4 weeks at the low temperatures typically associated with potatoes in storage. The VOCs released to the headspace around these tubers were collected using an adsorbent system and analysed by Gas Chromatography-Mass Spectrometry (GC-MS). Twenty-two volatiles unique to E. carotovora infection of potato tubers were found,) including 10 alkanes, four alkenes, two aldehydes, one sulphide, one ketone, one alcohol, one aromatic, one acid and one heterocyclic compound. B. polymyxa generated three unique volatiles: N,N-dimethylformamide, 1-pentadecene and 1-hexadecane. Only one volatile, 2,3-dihydrofuran, was unique to the Arthrobacter infection. Production of volatile nitrogen species from E. carotovora-infected tubers increased with time, whereas none were detected in the headspace above uninfected tubers. Further analysis using a modified GC-MS method established that ammonia, trimethylamine and several volatile sulphides were evolved from tubers infected by E. carotovora. No specific volatile was useful as a marker associated with any of the three bacterial species but in the case of E. carotovora-infected potato tubers a significant increase in the volume of compounds evolved was clearly observed. The results are discussed in relation to the use of sensors to detect VOCs evolved from infected tubers in order to provide an early warning system for the control of soft rot in potato store
Development of a sensor system for the early detection of soft rot in stored potato tubers
A number of sensor types were fabricated and tested for their electrical resistance changes to compounds known to be evolved by potato tubers with soft rot caused by the bacterium Erwinia carotovora. On the basis of these tests, three sensors were selected for incorporation into a prototype device. The device was portable and could be used without computer control after threshold values and sensor settling criteria had been downloaded. The prototype was assessed for its discriminating power under simulated storage conditions. The device was capable of detecting one tuber with soft rot in 100 kg of sound tubers in a simulated storage crate. The device was also able to detect a tuber inoculated with E. carotovora, but without visible signs of soft rot, within 10 kg of sound tubers. The same system was able to follow the progression of the disease in a tuber stored amongst 10 kg of sound tubers when operated at 4 °C and 85% relative humidity (conditions typical of a refrigerated storage facility)
Endophytes and microbial contaminents of micropropagated plants
SIGLEAvailable from British Library Document Supply Centre- DSC:DX172335 / BLDSC - British Library Document Supply CentreGBUnited Kingdo