83 research outputs found
Boolean network model predicts cell cycle sequence of fission yeast
A Boolean network model of the cell-cycle regulatory network of fission yeast
(Schizosaccharomyces Pombe) is constructed solely on the basis of the known
biochemical interaction topology. Simulating the model in the computer,
faithfully reproduces the known sequence of regulatory activity patterns along
the cell cycle of the living cell. Contrary to existing differential equation
models, no parameters enter the model except the structure of the regulatory
circuitry. The dynamical properties of the model indicate that the biological
dynamical sequence is robustly implemented in the regulatory network, with the
biological stationary state G1 corresponding to the dominant attractor in state
space, and with the biological regulatory sequence being a strongly attractive
trajectory. Comparing the fission yeast cell-cycle model to a similar model of
the corresponding network in S. cerevisiae, a remarkable difference in
circuitry, as well as dynamics is observed. While the latter operates in a
strongly damped mode, driven by external excitation, the S. pombe network
represents an auto-excited system with external damping.Comment: 10 pages, 3 figure
A human MAP kinase interactome.
Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps
Mining phenotypes for gene function prediction
<p>Abstract</p> <p>Background</p> <p>Health and disease of organisms are reflected in their phenotypes. Often, a genetic component to a disease is discovered only after clearly defining its phenotype. In the past years, many technologies to systematically generate phenotypes in a high-throughput manner, such as RNA interference or gene knock-out, have been developed and used to decipher functions for genes. However, there have been relatively few efforts to make use of phenotype data beyond the single genotype-phenotype relationships.</p> <p>Results</p> <p>We present results on a study where we use a large set of phenotype data – in textual form – to predict gene annotation. To this end, we use text clustering to group genes based on their phenotype descriptions. We show that these clusters correlate well with several indicators for biological coherence in gene groups, such as functional annotations from the Gene Ontology (GO) and protein-protein interactions. We exploit these clusters for predicting gene function by carrying over annotations from well-annotated genes to other, less-characterized genes in the same cluster. For a subset of groups selected by applying objective criteria, we can predict GO-term annotations from the biological process sub-ontology with up to 72.6% precision and 16.7% recall, as evaluated by cross-validation. We manually verified some of these clusters and found them to exhibit high biological coherence, e.g. a group containing all available antennal Drosophila odorant receptors despite inconsistent GO-annotations.</p> <p>Conclusion</p> <p>The intrinsic nature of phenotypes to visibly reflect genetic activity underlines their usefulness in inferring new gene functions. Thus, systematically analyzing these data on a large scale offers many possibilities for inferring functional annotation of genes. We show that text clustering can play an important role in this process.</p
FORG3D: Force-directed 3D graph editor for visualization of integrated genome scale data
<p>Abstract</p> <p>Background</p> <p>Genomics research produces vast amounts of experimental data that needs to be integrated in order to understand, model, and interpret the underlying biological phenomena. Interpreting these large and complex data sets is challenging and different visualization methods are needed to help produce knowledge from the data.</p> <p>Results</p> <p>To help researchers to visualize and interpret integrated genomics data, we present a novel visualization method and bioinformatics software tool called FORG3D that is based on real-time three-dimensional force-directed graphs. FORG3D can be used to visualize integrated networks of genome scale data such as interactions between genes or gene products, signaling transduction, metabolic pathways, functional interactions and evolutionary relationships. Furthermore, we demonstrate its utility by exploring gene network relationships using integrated data sets from a <it>Caenorhabditis elegans </it>Parkinson's disease model.</p> <p>Conclusion</p> <p>We have created an open source software tool called FORG3D that can be used for visualizing and exploring integrated genome scale data.</p
Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis
Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways
Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis
Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways
High-Throughput Construction of Intron-Containing Hairpin RNA Vectors for RNAi in Plants
With the wide use of double-stranded RNA interference (RNAi) for the analysis of gene function in plants, a high-throughput system for making hairpin RNA (hpRNA) constructs is in great demand. Here, we describe a novel restriction-ligation approach that provides a simple but efficient construction of intron-containing hpRNA (ihpRNA) vectors. The system takes advantage of the type IIs restriction enzyme BsaI and our new plant RNAi vector pRNAi-GG based on the Golden Gate (GG) cloning. This method requires only a single PCR product of the gene of interest flanked with BsaI recognition sequence, which can then be cloned into pRNAi-GG at both sense and antisense orientations simultaneously to form ihpRNA construct. The process, completed in one tube with one restriction-ligation step, produced a recombinant ihpRNA with high efficiency and zero background. We demonstrate the utility of the ihpRNA constructs generated with pRNAi-GG vector for the effective silencing of various individual endogenous and exogenous marker genes as well as two genes simultaneously. This method provides a novel and high-throughput platform for large-scale analysis of plant functional genomics
A Gene-Phenotype Network for the Laboratory Mouse and Its Implications for Systematic Phenotyping
The laboratory mouse is the pre-eminent model organism for the dissection of human disease pathways. With the advent of a comprehensive panel of gene knockouts, projects to characterise the phenotypes of all knockout lines are being initiated. The range of genotype-phenotype associations can be represented using the Mammalian Phenotype ontology. Using publicly available data annotated with this ontology we have constructed gene and phenotype networks representing these associations. These networks show a scale-free, hierarchical and modular character and community structure. They also exhibit enrichment for gene coexpression, protein-protein interactions and Gene Ontology annotation similarity. Close association between gene communities and some high-level ontology terms suggests that systematic phenotyping can provide a direct insight into underlying pathways. However some phenotypes are distributed more diffusely across gene networks, likely reflecting the pleiotropic roles of many genes. Phenotype communities show a many-to-many relationship to human disease communities, but stronger overlap at more granular levels of description. This may suggest that systematic phenotyping projects should aim for high granularity annotations to maximise their relevance to human disease
Computational Design of Artificial RNA Molecules For Gene Regulation
This volume provides an overview of RNA bioinformatics methodologies, including basic strategies to predict secondary and tertiary structures, and novel algorithms based on massive RNA sequencing. Interest in RNA bioinformatics has rapidly increased thanks to the recent high-throughput sequencing technologies allowing scientists to investigate complete transcriptomes at single nucleotide resolution. Adopting advanced computational technics, scientists are now able to conduct more in-depth studies and present them to you in this book. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and equipment, step-by-step, readily reproducible bioinformatics protocols, and key tips to avoid known pitfalls.Authoritative and practical, RNA Bioinformatics seeks to aid scientists in the further study of bioinformatics and computational biology of RNA
An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae
Background: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings: We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.This work was supported by grants from the N.S.F. (IIS-0325116, EIA-0219061), N.I.H. (GM06779-01,GM076536-01), Welch (F-1515), and a Packard Fellowship (EMM). These agencies were not involved in the design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript.Cellular and Molecular Biolog
- …