328 research outputs found
Wavefront shaping of a Bessel light field enhances light sheet microscopy with scattered light
The project was supported by the UK Engineering and Physical Sciences Research Council, RS MacDonald Charitable Trust, SULSA, and the St. Andrews 600th anniversary BRAINS appeal. K. D. is a Royal Society Wolfson Merit Award holder.Light sheet microscopy has seen a resurgence as it facilitates rapid, high contrast, volumetric imaging with minimal sample exposure. Initially developed for imaging scattered light, this application of light sheet microscopy has largely been overlooked but provides an endogenous contrast mechanism which can complement fluorescence imaging and requires very little or no modification to an existing light sheet fluorescence microscope. Fluorescence imaging and scattered light imaging differ in terms of image formation. In the former the detected light is incoherent and weak whereas in the latter the coherence properties of the illumination source, typically a laser, dictate the coherence of detected light, but both are dependent on the quality of the illuminating light sheet. Image formation in both schemes can be understood as the convolution of the light sheet with the specimen distribution. In this paper we explore wavefront shaping for the enhancement of light sheet microscopy with scattered light. We show experimental verification of this result, demonstrating the use of the propagation invariant Bessel beam to extend the field of view of a high resolution scattered light, light sheet microscope and its application to imaging of biological super-cellular structures with sub-cellular resolution. Additionally, complementary scattering and fluorescence imaging is used to characterize the enhancement, and to develop a deeper understanding of the differences of image formation between contrast mechanisms in light sheet microscopy.Publisher PD
Gas stripping in galaxy clusters: a new SPH simulation approach
The influence of a time-varying ram pressure on spiral galaxies in clusters
is explored with a new simulation method based on the N-body SPH/tree code
GADGET. We have adapted the code to describe the interaction of two different
gas phases, the diffuse hot intracluster medium (ICM) and the denser and colder
interstellar medium (ISM). Both the ICM and ISM components are introduced as
SPH particles. As a galaxy arrives on a highly radial orbit from outskirts to
cluster center, it crosses the ICM density peak and experiences a time-varying
wind. Depending on the duration and intensity of the ISM-ICM interaction, early
and late type galaxies in galaxy clusters with either a large or small ICM
distribution are found to show different stripping efficiencies, amounts of
reaccretion of the extra-planar ISM, and final masses. We compare the numerical
results with analytical approximations of different complexity and indicate the
limits of the Gunn & Gott simple stripping formula. Our investigations
emphasize the role of the galactic orbital history to the stripping amount. We
discuss the contribution of ram pressure stripping to the origin of the ICM and
its metallicity. We propose gas accumulations like tails, filaments, or ripples
to be responsible for stripping in regions with low overall ICM occurrence.Comment: 18 pages, 23 figures, accepted for publication in A&
Condensation of `composite bosons' in a rotating BEC
We provide evidence for several novel phases in the dilute limit of rotating
BECs. By exact calculation of wavefunctions and energies for small numbers of
particles, we show that the states near integer angular momentum per particle
are best considered condensates of composite entities, involving vortices and
atoms. We are led to this result by explicit comparison with a description
purely in terms of vortices. Several parallels with the fractional quantum Hall
effect emerge, including the presence of the Pfaffian state.Comment: 4 pages, Latex, 3 figure
The Ca2+ sensor protein Swiprosin-1/EFhd2 is present in neurites and involved in kinesin-mediated transport in neurons
This work was supported by grants from the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG; FOR832, to DM), the German Federal Ministry of Education and Research (01GQ113; to BW), the Bavarian Ministry of Sciences, Research and the Arts in the framework of the Bavarian Molecular Biosystems Reseach Network, the Interdisciplinary Center for Clinical Research (IZKF, Universitatsklinikum Erlangen; E8, to DM; NIII, to BW; Lab rotation to MR), the ELAN Fonds (Universitatsklinikum Erlangen; 11.08.19.1, to IP), and the Alzheimerâs Research UK (EB, FGM).Swiprosin-1/EFhd2 (EFhd2) is a cytoskeletal Ca2+ sensor protein strongly expressed in the brain. It has been shown to interact with mutant tau, which can promote neurodegeneration, but nothing is known about the physiological function of EFhd2 in the nervous system. To elucidate this question, we analyzed EFhd2-/-/lacZ reporter mice and showed that lacZ was strongly expressed in the cortex, the dentate gyrus, the CA1 and CA2 regions of the hippocampus, the thalamus, and the olfactory bulb. Immunohistochemistry and western blotting confirmed this pattern and revealed expression of EFhd2 during neuronal maturation. In cortical neurons, EFhd2 was detected in neurites marked by MAP2 and co-localized with preand post-synaptic markers. Approximately one third of EFhd2 associated with a biochemically isolated synaptosome preparation. There, EFhd2 was mostly confined to the cytosolic and plasma membrane fractions. Both synaptic endocytosis and exocytosis in primary hippocampal EFhd2-/- neurons were unaltered but transport of synaptophysin-GFP containing vesicles was enhanced in EFhd2-/- primary hippocampal neurons, and notably, EFhd2 inhibited kinesin mediated microtubule gliding. Therefore, we found that EFhd2 is a neuronal protein that interferes with kinesin-mediated transport.Peer reviewe
Kinetic decoupling of neutralino dark matter
After neutralinos cease annihilating in the early Universe, they may still
scatter elastically from other particles in the primordial plasma. At some
point in time, however, they will eventually stop scattering. We calculate the
cross sections for neutralino elastic scattering from standard-model particles
to determine the time at which this kinetic decoupling occurs. We show that
kinetic decoupling occurs above a temperature MeV. Thereafter,
neutralinos act as collisionless cold dark matter.Comment: Replaced with revised version, new references adde
M Dwarfs in SDSS Stripe 82: Photometric Light Curves and Flare Rate Analysis
We present a flare rate analysis of 50,130 M dwarf light curves in SDSS
Stripe 82. We identified 271 flares using a customized variability index to
search ~2.5 million photometric observations for flux increases in the u- and
g-bands. Every image of a flaring observation was examined by eye and with a
PSF-matching and image subtraction tool to guard against false positives.
Flaring is found to be strongly correlated with the appearance of H-alpha in
emission in the quiet spectrum. Of the 99 flare stars that have spectra, we
classify 8 as relatively inactive. The flaring fraction is found to increase
strongly in stars with redder colors during quiescence, which can be attributed
to the increasing flare visibility and increasing active fraction for redder
stars. The flaring fraction is strongly correlated with |Z| distance such that
most stars that flare are within 300 pc of the Galactic plane. We derive flare
u-band luminosities and find that the most luminous flares occur on the
earlier-type M dwarfs. Our best estimate of the lower limit on the flaring rate
(averaged over Stripe 82) for flares with \Delta u \ge 0.7 magnitudes on stars
with u < 22 is 1.3 flares hour^-1 square degree^-1 but can vary significantly
with the line-of-sight.Comment: 44 pages, 13 figure
Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey: 100,000 z<3 Quasars from Data Release One
We present a catalog of 100,563 unresolved, UV-excess (UVX) quasar candidates
to g=21 from 2099 deg^2 of the Sloan Digital Sky Survey (SDSS) Data Release One
(DR1) imaging data. Existing spectra of 22,737 sources reveals that 22,191
(97.6%) are quasars; accounting for the magnitude dependence of this
efficiency, we estimate that 95,502 (95.0%) of the objects in the catalog are
quasars. Such a high efficiency is unprecedented in broad-band surveys of
quasars. This ``proof-of-concept'' sample is designed to be maximally
efficient, but still has 94.7% completeness to unresolved, g<~19.5, UVX quasars
from the DR1 quasar catalog. This efficient and complete selection is the
result of our application of a probability density type analysis to training
sets that describe the 4-D color distribution of stars and spectroscopically
confirmed quasars in the SDSS. Specifically, we use a non-parametric Bayesian
classification, based on kernel density estimation, to parameterize the color
distribution of astronomical sources -- allowing for fast and robust
classification. We further supplement the catalog by providing photometric
redshifts and matches to FIRST/VLA, ROSAT, and USNO-B sources. Future work
needed to extend the this selection algorithm to larger redshifts, fainter
magnitudes, and resolved sources is discussed. Finally, we examine some science
applications of the catalog, particularly a tentative quasar number counts
distribution covering the largest range in magnitude (14.2<g<21.0) ever made
within the framework of a single quasar survey.Comment: 35 pages, 11 figures (3 color), 2 tables, accepted by ApJS; higher
resolution paper and ASCII version of catalog available at
http://sdss.ncsa.uiuc.edu/qso/nbckde
Quantum Phases of Vortices in Rotating Bose-Einstein Condensates
We investigate the groundstates of weakly interacting bosons in a rotating
trap as a function of the number of bosons, , and the average number of
vortices, . We identify the filling fraction as the
parameter controlling the nature of these states. We present results indicating
that, as a function of , there is a zero temperature {\it phase
transition} between a triangular vortex lattice phase, and strongly-correlated
vortex liquid phases. The vortex liquid phases appear to be the Read-Rezayi
parafermion states
Quantum and classical localisation, the spin quantum Hall effect and generalisations
We consider network models for localisation problems belonging to symmetry
class C. This symmetry class arises in a description of the dynamics of
quasiparticles for disordered spin-singlet superconductors which have a
Bogoliubov - de Gennes Hamiltonian that is invariant under spin rotations but
not under time-reversal. Our models include but also generalise the one studied
previously in the context of the spin quantum Hall effect. For these systems we
express the disorder-averaged conductance and density of states in terms of
sums over certain classical random walks, which are self-avoiding and have
attractive interactions. A transition between localised and extended phases of
the quantum system maps in this way to a similar transition for the classical
walks. In the case of the spin quantum Hall effect, the classical walks are the
hulls of percolation clusters, and our approach provides an alternative
derivation of a mapping first established by Gruzberg, Read and Ludwig, Phys.
Rev. Lett. 82, 4254 (1999).Comment: 11 pages, 5 figure
Vitamin D status in cats with feline immunodeficiency virus
Feline immunodeficiency virus (FIV) is a lentivirus that can lead to a syndrome of acquired immune dysfunction. Infected cats often remain asymptomatic for several years before immune dysfunction leads to an increased risk for the development of systemic diseases, neoplasia and opportunistic infections. FIV is structurally related to human immunodeficiency virus (HIV) and the pathogenesis of FIVârelated disease is similar to that seen in HIVâinfected patients. Observational studies have documented an association between low plasma vitamin D and HIV infection. Vitamin D status has been shown to be associated with HIVârelated disease progression, morbidity and mortality. The objective of this study was to examine the hypothesis that vitamin D status, as assessed by serum 25âhydroxyvitamin D [25(OH)D] concentrations, are lower in cats with FIV infection compared to healthy control cats. Serum 25(OH)D concentrations were measured in 20 healthy cats, 39 hospitalized ill cats and 59 cats infected with FIV. Cats which were FIV infected had significantly lower 25(OH)D concentrations compared to healthy control cats. Serum 25(OH)D concentrations were not significantly different between FIVâinfected cats and hospitalized ill cats. Further investigations are warranted to determine whether vitamin D status influences the prognosis of cats infected with FIV
- âŚ