368 research outputs found
Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador
International audienceVolcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakes ? Lakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. ? have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account. Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists
Saturn integrated circuit reliability test program Quarterly progress report, Jul. - Sep. 1966
Saturn integrated circuit reliability tests performed to improve failure mode screenin
Transport limits in defect-engineered LaAlO3/SrTiO3 bilayers
The electrical properties of the metallic interface in LaAlO3/SrTiO3 (LAO/STO) bilayers are investigated with focus on the role of cationic defects in thin film STO. Systematic growth-control of the STO thin film cation stoichiometry (defect-engineering) yields a relation between cationic defects in the STO layer and electronic properties of the bilayer-interface. Hall measurements reveal a stoichiometry-effect primarily on the electron mobility. The results indicate an enhancement of scattering processes in as-grown non-stoichiometric samples indicating an increased density of defects. Furthermore, we discuss the thermodynamic processes and defect-exchange reactions at the LAO/STO-bilayer interface determined in high temperature equilibrium. By quenching defined defect states from high temperature equilibrium, we finally connect equilibrium thermodynamics with room temperature transport. The results are consistent with the defect-chemistry model suggested for LAO/STO interfaces. Moreover, they reveal an additional healing process of extended defects in thin film STO
Watching videos together in social Virtual Reality: An experimental study on userâs QoE
In this paper, we describe a user study in which pairs of users watch a video trailer and interact with each other, using two social Virtual Reality (sVR) systems, as well as in a face-to-face condition. The sVR systems are: Facebook Spaces, based on puppet-like customized avatars, and a video-based sVR system using photo-realistic virtual user representations. We collect subjective and objective data to analyze usersâ Quality of Experience (QoE) and compare their interaction in VR to that observed during the real-life scenario. Our results show that the experience delivered by the video-based sVR system is comparable with real-life settings, while the puppet-based avatars limit the perceived q
Identifying Ionic and Electronic Charge Transfer at Oxide Heterointerfaces
The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3/SrTiO3. Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered
UV radiation enhanced oxygen vacancy formation caused by the PLD plasma plume
Pulsed Laser Deposition is a commonly used non-equilibrium physical deposition technique for the growth of complex oxide thin films. A wide range of parameters is known to influence the properties of the used samples and thin films, especially the oxygen-vacancy concentration. One parameter has up to this point been neglected due to the challenges of separating its influence from the influence of the impinging species during growth: the UV-radiation of the plasma plume. We here present experiments enabled by a specially designed holder to allow a separation of these two influences. The influence of the UV-irradiation during pulsed laser deposition on the formation of oxygen-vacancies is investigated for the perovskite model material SrTiO3. The carrier concentration of UV-irradiated samples is nearly constant with depth and time. By contrast samples not exposed to the radiation of the plume show a depth dependence and a decrease in concentration over time. We reveal an increase in Ti-vacancyâoxygen-vacancy-complexes for UV irradiated samples, consistent with the different carrier concentrations. We find a UV enhanced oxygen-vacancy incorporation rate as responsible mechanism. We provide a complete picture of another influence parameter to be considered during pulsed laser depositions and unravel the mechanism behind persistent-photo-conductivity in SrTiO3
On the Filter Narrowing Issues in Elastic Optical Networks
This paper describes the problematic filter narrowing effect in the context of next-generation elastic optical networks. First, three possible scenarios are introduced: the transition from an actual fixed-grid to a flexigrid network, the generic full flexi-grid network, and a proposal for a filterless optical network. Next, we investigate different transmission techniques and evaluate the penalty introduced by the filtering effect when considering Nyquist wavelength division multiplexing, single side-band direct-detection orthogonal frequency division multiplexing, and symbol-rate variable dual polarization quadrature amplitude modulation. Also, different approaches to compensate for the filter narrowing effect are discussed. Results show that the specific needs per each scenario can be fulfilled by the aforementioned technologies and techniques or a combination of them, when balancing performance, network reach, and cost
How AI Systems Challenge the Conditions of Moral Agency?
The article explores the effects increasing automation has on our conceptions of human agency. We conceptualize the central features of human agency as ableness, intentionality, and rationality and define responsibility as a central feature of moral agency. We discuss suggestions in favor of holding AI systems moral agents for their functions but join those who refute this view. We consider the possibility of assigning moral agency to automated AI systems in settings of machine-human cooperation but come to the conclusion that AI systems are not genuine participants in joint action and cannot be held morally responsible. Philosophical issues notwithstanding, the functions of AI systems change human agency as they affect our goal setting and pursuing by influencing our conceptions of the attainable. Recommendation algorithms on news sites, social media platforms, and in search engines modify our possibilities to receive accurate and comprehensive information, hence influencing our decision making. Sophisticated AI systems replace human workforce even in such demanding fields as medical surgery, language translation, visual arts, and composing music. Being second to a machine in an increasing number of fields of expertise will affect how human beings regard their own abilities. We need a deeper understanding of how technological progress takes place and how it is intertwined with economic and political realities. Moral responsibility remains a human characteristic. It is our duty to develop AI to serve morally good ends and purposes. Protecting and strengthening the conditions of human agency in any AI environment is part of this task.Peer reviewe
- âŠ