1,680 research outputs found

    Outgassing, Temperature Gradients and the Radiometer Effect in LISA: A Torsion Pendulum Investigation

    Get PDF
    Thermal modeling of the LISA gravitational reference sensor (GRS) includes such effects as outgassing from the proof mass and its housing and the radiometer effect. Experimental data in conditions emulating the LISA GRS are required to confidently predict the GRS performance. Outgassing and the radiometer effect are similar in characteristics and are difficult to decouple experimentally. The design of our torsion balance allows us to investigate differential radiation pressure, the radiometer effect, and outgassing on closely separated conducting surfaces with high sensitivity. A thermally controlled split copper plate is brought near a freely hanging plate-torsion pendulum.We have varied the temperature on each half of the copper plate and have measured the resulting forces on the pendulum. We have determined that to first order the current GRS model for the radiometer effect, outgassing, and radiation pressure are mostly consistent with our torsion balance measurements and therefore these thermal effects do not appear to be a large hindrance to the LISA noise budget. However, there remain discrepancies between the predicted dependence of these effects on the temperature of our apparatus.Comment: 6th International LISA Symposiu

    What drives the dust activity of comet 67P/Churyumov-Gerasimenko?

    Full text link
    We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volatile ices. To derive the ejected aggregate sizes, we developed a model based on the assumption that the entire heat absorbed by the surface is consumed by the sublimation process of one volatile species. The calculations were performed for the three most prominent volatile materials in comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of the dust aggregates able to escape from the nucleus into space widens when the comet approaches the Sun and narrows with increasing heliocentric distance, because the tensile strength of the aggregates decreases with increasing aggregate size. The activity of CO ice in comparison to H_20 ice is capable to detach aggregates smaller by approximately one order of magnitude from the surface. As a result of the higher sublimation rate of CO ice, larger aggregates are additionally able to escape from the gravity field of the nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7 AU. Furthermore, the model predicts the release of decimeter-sized aggregates (trail particles) close to the heliocentric distance at which the gas-driven dust activity vanishes. However, the gas-driven dust activity cannot explain the presence of particles smaller than ~1 mm in the coma because the high tensile strength required to detach these particles from the surface cannot be provided by evaporation of volatile ices. These smaller particles can be produced for instance by spin-up and centrifugal mass loss of ejected larger aggregates

    Massive fields tend to form highly oscillating self-similarly expanding shells

    Full text link
    The time evolution of self-interacting spherically symmetric scalar fields in Minkowski spacetime is investigated based on the use of Green's theorem. It is shown that a massive Klein-Gordon field can be characterized by the formation of certain expanding shell structures where all the shells are built up by very high frequency oscillations. This oscillation is found to be modulated by the product of a simple time decaying factor of the form t−3/2t^{-{3}/{2}} and of an essentially self-similar expansion. Apart from this self-similar expansion the developed shell structure is preserved by the evolution. In particular, the energy transported by each shell appears to be time independent.Comment: 10 pages, to appear in Phys. Rev.

    Threshold of Singularity Formation in the Semilinear Wave Equation

    Full text link
    Solutions of the semilinear wave equation are found numerically in three spatial dimensions with no assumed symmetry using distributed adaptive mesh refinement. The threshold of singularity formation is studied for the two cases in which the exponent of the nonlinear term is either p=5p=5 or p=7p=7. Near the threshold of singularity formation, numerical solutions suggest an approach to self-similarity for the p=7p=7 case and an approach to a scale evolving static solution for p=5p=5.Comment: 6 pages, 7 figure

    10 + 1 to 3 + 1 in an Early Universe with mutually BPS Intersecting Branes

    Full text link
    We assume that the early universe is homogeneous, anisotropic, and is dominated by the mutually BPS 22'55' intersecting branes of M theory. The spatial directions are all taken to be toroidal. Using analytical and numerical methods, we study the evolution of such an universe. We find that, asymptotically, three spatial directions expand to infinity and the remaining spatial directions reach stabilised values. Any stabilised values can be obtained by a fine tuning of initial brane densities. We give a physical description of the stabilisation mechanism. Also, from the perspective of four dimensional spacetime, the effective four dimensional Newton's constant G_4 is now time varying. Its time dependence will follow from explicit solutions. We find in the present case that, asymptotically, G_4 exhibits characteristic log periodic oscillations.Comment: Latex file, 59 pages, 7 figures. Version 2: A minor correction and a reference added. Version 3: Critical discussion of the main assumptions is added in sections I and VIII; two references added. To appear in Physical Review

    Indirect Evidence for L\'evy Walks in Squeeze Film Damping

    Full text link
    Molecular flow gas damping of mechanical motion in confined geometries, and its associated noise, is important in a variety of fields, including precision measurement, gravitational wave detection, and MEMS devices. We used two torsion balance instruments to measure the strength and distance-dependence of `squeeze film' damping. Measured quality factors derived from free decay of oscillation are consistent with gas particle superdiffusion in L\'evy walks and inconsistent with those expected from traditional Gaussian random walk particle motion. The distance-dependence of squeeze film damping observed in our experiments is in agreement with a parameter-free Monte Carlo simulation. The squeeze film damping of the motion of a plate suspended a distance d away from a parallel surface scales with a fractional power between 1/d and 1/d^2.Comment: 5 pages 5 figures accepted for PRD; typo in equation 3 and figure 1 fixe
    • …
    corecore