13 research outputs found

    Metal-THINGS: On the metallicity and ionization of ULX sources in NGC 925

    Full text link
    We present an analysis of the optical properties of three Ultra Luminous X-ray (ULX) sources identified in NGC 925. We use Integral field unit data from the George Mitchel spectrograph in the context of the Metal-THINGS survey. The optical properties for ULX-1 and ULX-3 are presented, while the spaxel associated with ULX-2 had a low S/N, which prevented its analysis. We also report the kinematics and dimensions of the optical nebula associated with each ULX using ancillary data from the PUMA Fabry-Perot spectrograph. A BPT analysis demonstrates that most spaxels in NGC 925 are dominated by star-forming regions, including those associated with ULX-1 and ULX-3. Using the resolved gas-phase metallicities, a negative metallicity gradient is found, consistent with previous results for spiral galaxies, while the ionization parameter tends to increase radially throughout the galaxy. Interestingly, ULX-1 shows a very low gas metallicity for its galactocentric distance, identified by two independent methods, while exhibiting a typical ionization. We find that such low gas metallicity is best explained in the context of the high-mass X-ray binary population, where the low-metallicity environment favours active Roche lobe overflows that can drive much higher accretion rates. An alternative scenario invoking accretion of a low-mass galaxy is not supported by the data in this region. Finally, ULX-3 shows both a high metallicity and ionization parameter, which is consistent with the progenitor being a highly-accreting neutron star within an evolved stellar population region.Comment: Accepted by Ap

    Galaxy and mass assembly: Resolving the role of environment in galaxy evolution

    Get PDF
    We present observations of 18 galaxies from the Galaxy And Mass Assembly (GAMA) survey made with the SPIRAL optical integral field unit (IFU) on the Anglo-Australian Telescope. The galaxies are selected to have a narrow range in stellar mass (6 × 109

    Galaxy and Mass Assembly (GAMA): active galactic nuclei in pairs of galaxies

    Get PDF
    There exist conflicting observations on whether or not the environment of broad- and narrowline active galatic nuclei (AGN) differ and this consequently questions the validity of the AGN unification model. The high spectroscopic completeness of the Galaxy and Mass Assembly (GAMA) survey makes it ideal for a comprehensive analysis of the close environment of galaxies. To exploit this, and conduct a comparative analysis of the environment of broad- and narrow-line AGN within GAMA, we use a double-Gaussian emission line fitting method to model the more complex line profiles associated with broad-line AGN. We select 209 type 1 (i.e. unobscured), 464 type 1.5–1.9 (partially obscured), and 281 type 2 (obscured) AGN within the GAMA II data base. Comparing the fractions of these with neighbouring galaxies out to a pair separation of 350 kpc h−1 and Δz < 0.012 shows no difference between AGN of different type, except at separations less than 20 kpc h−1 where our observations suggest an excess of type 2 AGN in close pairs. We analyse the properties of the galaxies neighbouring our AGN and find no significant differences in colour or the star formation activity of these galaxies. Further to this, we find that Σ5 is also consistent between broad- and narrow-line AGN. We conclude that the observations presented here are consistent with AGN unification

    Uvodna riječ

    Get PDF
    We present the second major release of data from the Sydney - Australian Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey. Data Release Two includes data for 1559 galaxies, about 50 per cent of the full survey. Galaxies included have a redshift range 0.004 11], the velocity dispersion strongly increases towards the centre, whereas below log (M-*/M-circle dot) < 10 we find no evidence for a clear increase in the central velocity dispersion. This suggests a transition mass around log (M-*/M-circle dot) similar to 10 for galaxies with or without a dispersion-dominated bulge

    Spatially resolved signature of quenching in star-forming galaxies

    Get PDF
    Understanding when, how, and where star formation ceased (quenching) within galaxies is still a critical subject in galaxy evolution studies. Taking advantage of the new methodology developed by Quai et al, to select recently quenched galaxies, we explored the spatial information provided by the WU data to get critical insights on this process. In particular, we analyse 10 SDSS-IV MaNGA galaxies that show regions with low [OIII]/II alpha, compatible with a recent quenching of the star formation. We compare the properties of these 10 galaxies with those of a control sample of 8 MaNGA galaxies with ongoing star formation in the same stellar mass, redshift, and gas-phase metallicity range. The quenching regions found are located between 0.5 and 1.1 effective radii from the centre. This result is supported by the analysis of the average radial profile of the ionization parameter, which reaches a minimum at the same radii, while the one of the star-forming sample shows an almost flat trend. These quenching regions occupy a total area between similar to 15 and 45 per cent of our galaxies, Moreover, the average radial profile of the star formation rate surface density of our sample is lower and Clatter than that of the control sample, at any radii, suggesting a systematic suppression of the star formation in the inner part of our galaxies, Finally, the radial profiles of gas-phase metallicity of the two samples have a similar slope and normalization, Our results cannot be ascribed to a difference in the intrinsic properties of the analysed galaxies, suggesting a quenching scenario more complicated than a simple inside-out quenching
    corecore