24 research outputs found

    Behavioral Defects in Chaperone-Deficient Alzheimer's Disease Model Mice

    Get PDF
    Molecular chaperones protect cells from the deleterious effects of protein misfolding and aggregation. Neurotoxicity of amyloid-beta (AĪ²) aggregates and their deposition in senile plaques are hallmarks of Alzheimer's disease (AD). We observed that the overall content of Ī±B-crystallin, a small heat shock protein molecular chaperone, decreased in AD model mice in an age-dependent manner. We hypothesized that Ī±B-crystallin protects cells against AĪ² toxicity. To test this, we crossed Ī±B-crystallin/HspB2 deficient (CRYAB-/-HSPB2-/-) mice with AD model transgenic mice expressing mutant human amyloid precursor protein. Transgenic and non-transgenic mice in chaperone-sufficient or deficient backgrounds were examined for representative behavioral paradigms for locomotion and memory network functions: (i) spatial orientation and locomotion was monitored by open field test; (ii) sequential organization and associative learning was monitored by fear conditioning; and (iii) evoked behavioral response was tested by hot plate method. Interestingly, Ī±B-crystallin/HspB2 deficient transgenic mice were severely impaired in locomotion compared to each genetic model separately. Our results highlight a synergistic effect of combining chaperone deficiency in a transgenic mouse model for AD underscoring an important role for chaperones in protein misfolding diseases

    Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-<it>O</it>-methylhonokiol, a constituent of <it>Magnolia officinalis</it>, on memory deficiency caused by LPS, along with the underlying mechanisms.</p> <p>Methods</p> <p>We investigated whether 4-<it>O</it>-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 Ī¼g/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-<it>O</it>-methylhonkiol (0.5, 1 and 2 Ī¼M).</p> <p>Results</p> <p>Oral administration of 4-<it>O</it>-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-<it>O</it>-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In <it>in vitro </it>study, we also found that 4-<it>O</it>-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E<sub>2</sub>, tumor necrosis factor-Ī±, and interleukin-1Ī² in the LPS-stimulated cultured astrocytes. 4-<it>O</it>-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-ĪŗB via inhibition of IĪŗB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-<it>O</it>-methylhonokiol inhibited LPS-induced AĪ²<sub>1-42 </sub>generation, Ī²- and Ī³-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells.</p> <p>Conclusion</p> <p>These results suggest that 4-<it>O</it>-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-<it>O</it>-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD.</p

    BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival

    Get PDF
    Malignant melanoma is one of the most difficult cancers to treat due to its resistance to chemotherapy. Despite recent successes with BRAF inhibitors and immune checkpoint inhibitors, many patients do not respond or become resistant to these drugs. Hence, alternative treatments are still required. Due to the importance of the BCL-2-regulated apoptosis pathway in cancer development and drug resistance, it is of interest to establish which proteins are most important for melanoma cell survival, though the outcomes of previous studies have been conflicting. To conclusively address this question, we tested a panel of established and early passage patient-derived cell lines against several BH3-mimetic drugs designed to target individual or subsets of pro-survival BCL-2 proteins, alone and in combination, in both 2D and 3D cell cultures. None of the drugs demonstrated significant activity as single agents, though combinations targeting MCL-1 plus BCL-XL, and to a lesser extent BCL-2, showed considerable synergistic killing activity that was elicited via both BAX and BAK. Genetic deletion of BFL-1 in cell lines that express it at relatively high levels only had minor impact on BH3-mimetic drug sensitivity, suggesting it is not a critical pro-survival protein in melanoma. Combinations of MCL-1 inhibitors with BRAF inhibitors also caused only minimal additional melanoma cell killing over each drug alone, whilst combinations with the proteasome inhibitor bortezomib was more effective in multiple cell lines. Our data show for the first time that therapies targeting specific combinations of BCL-2 pro-survival proteins, namely MCL-1 plus BCL-XL and MCL-1 plus BCL-2, could have significant benefit for the treatment of melanoma
    corecore