479 research outputs found
Influence of Soil Water Content and Soil Amendments on Trace Metal Release and Seedling Growth in Serpentine Soil
This study was conducted to evaluate the synergistic effects of organic amendments and soil water status on trace metal release from serpentine soil
Building Knowledge across Language Systems: The Role of Audio and Visual Supports in Bilingual Learning through Self-Derivation
Children who enter the US education system as emerging bilinguals (or English Learners) show significant gaps in test scores and graduation rates compared to their English monolingual peers. Dual-language education programs may provide an instructional context that capitalizes on emerging bilingual children’s strengths and supports their academic performance while they acquire English. However, prior research has shown that integrating semantic knowledge across language systems poses a challenge. Supports may mitigate these challenges. Thus, across two studies, we examined instructional practices that may facilitate the integration of academic content across English and Spanish in elementary-age children enrolled in dual-language education programs. In Study 1, we examined whether facts presented through reading-while-listening or children’s silent self-paced reading more effectively supported learning the facts and subsequent integration for dual-language students in grades 3 and 4 (n = 56; Mage = 9.54 years). In Study 2, we examined whether combining graphics with text was more effective in supporting fact learning and cross-language integration compared to facts presented as text alone in dual-language students in grades 4 and 5 (n = 67; Mage = 10.48 years). Overall, the studies replicate the benefits of reading-while-listening and graphics for learning directly taught facts, but underscore the difficulty in integrating semantic knowledge across lessons and languages
Digitalization and artificial knowledge for accountability in SCM: a systematic literature review
Purpose: In this study, the authors examine artificial knowledge as a fundamental stream of knowledge management for sustainable and resilient business models in supply chain management (SCM). The study aims to provide a comprehensive overview of artificial knowledge and digitalization as key enablers of the improvement of SCM accountability and sustainable performance towards the UN 2030 Agenda. Design/methodology/approach: Using the SCOPUS database and Google Scholar, the authors analyzed 135 English-language publications from 1990 to 2022 to chart the pattern of knowledge production and dissemination in the literature. The data were collected, reviewed and peer-reviewed before conducting bibliometric analysis and a systematic literature review to support future research agenda. Findings: The results highlight that artificial knowledge and digitalization are linked to the UN 2030 Agenda. The analysis further identifies the main issues in achieving sustainable and resilient SCM business models. Based on the results, the authors develop a conceptual framework for artificial knowledge and digitalization in SCM to increase accountability and sustainable performance, especially in times of sudden crises when business resilience is imperative. Research limitations/implications: The study results add to the extant literature by examining artificial knowledge and digitalization from the resilience theory perspective. The authors suggest that different strategic perspectives significantly promote resilience for SCM digitization and sustainable development. Notably, fostering diverse peer exchange relationships can help stimulate peer knowledge and act as a palliative mechanism that builds digital knowledge to strengthen and drive future possibilities. Practical implications: This research offers valuable guidance to supply chain practitioners, managers and policymakers in re-thinking, re-formulating and re-shaping organizational processes to meet the UN 2030 Agenda, mainly by introducing artificial knowledge in digital transformation training and education programs. In doing so, firms should focus not simply on digital transformation but also on cultural transformation to enhance SCM accountability and sustainable performance in resilient business models. Originality/value: This study is, to the authors' best knowledge, among the first to conceptualize artificial knowledge and digitalization issues in SCM. It further integrates resilience theory with institutional theory, legitimacy theory and stakeholder theory as the theoretical foundations of artificial knowledge in SCM, based on firms' responsibility to fulfill the sustainable development goals under the UN's 2030 Agenda
Impacts of river regulation and other anthropogenic activities on floodplain vegetation: A case study from Sri Lanka
Since the initiation of large-scale development in late 1970s, the Mahaweli River basin in Sri Lanka has experienced significant changes. However, no comprehensive study has been undertaken so far to evaluate the impacts of river regulation on associated ecosystems including floodplains in the downstream. The present study was aimed at identifying the impacts due to both river regulation and other anthropogenic activities on inland floodplain habitats (locally known as villus) located along the final stretch of the River Mahaweli before reaching the Indian Ocean. Four villus, Handapana (HAN), Bendiya (BEN), Karapola (KAR) and Gengala (GEN), were selected for the study. HAN and BEN can be considered as highly influenced (HI) by river regulation while KAR and GEN as less influenced (LI) due to their respective locations. Due to the absence of pre- regulation vegetation data, HI villus were compared with LI villus in order to explore any potential impacts of river regulation. Vegetation was enumerated using belt transect method. To find out other on-going anthropogenic impacts on these villu ecosystems, a survey was conducted using 100 individuals living in two villages located nearby. The results revealed some significant modification in the composition and the diversity of the vegetation, most possibly due to river regulation and other on-going anthropogenic activities. However, the most notable changes were recorded in the herbaceous layer. Some native aquatic herbaceous species have been completely absent over the period of two decades since the developmental activities begun, while some exotic invasive aquatic species (Eichhornia crassipes) dominated the herbaceous layer in HI villus threatening the survival of the remaining native species. Density and richness of lianas too diminished significantly in HI villus perhaps due to changes of micro-habitat conditions as a result of river regulation and also due to over-harvesting for commercial purposes. The results suggest that these ecosystems have been altered over the years due to culmination of factors including altered flow regimes following river regulation and some on-going human influences. The present study highlights the importance of regulating such human influences on villus including fishing and extracting cane and reed in order to protect these vulnerable ecosystems for future generations. The potential of these ecosystems to develop ecotourism has also been emphasized
Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and meson in Au+Au collisions at = 200 GeV
We present high precision measurements of elliptic flow near midrapidity
() for multi-strange hadrons and meson as a function of
centrality and transverse momentum in Au+Au collisions at center of mass energy
200 GeV. We observe that the transverse momentum dependence of
and is similar to that of and , respectively,
which may indicate that the heavier strange quark flows as strongly as the
lighter up and down quarks. This observation constitutes a clear piece of
evidence for the development of partonic collectivity in heavy-ion collisions
at the top RHIC energy. Number of constituent quark scaling is found to hold
within statistical uncertainty for both 0-30 and 30-80 collision
centrality. There is an indication of the breakdown of previously observed mass
ordering between and proton at low transverse momentum in the
0-30 centrality range, possibly indicating late hadronic interactions
affecting the proton .Comment: 7 pages and 4 figures, Accepted for publication in Physical Review
Letter
Azimuthal anisotropy in U+U and Au+Au collisions at RHIC
Collisions between prolate uranium nuclei are used to study how particle
production and azimuthal anisotropies depend on initial geometry in heavy-ion
collisions. We report the two- and four-particle cumulants, and
, for charged hadrons from U+U collisions at =
193 GeV and Au+Au collisions at = 200 GeV. Nearly fully
overlapping collisions are selected based on the amount of energy deposited by
spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the
observed dependence of on multiplicity demonstrates that ZDC
information combined with multiplicity can preferentially select different
overlap configurations in U+U collisions. An initial-state model with gluon
saturation describes the slope of as a function of multiplicity in
central collisions better than one based on Glauber with a two-component
multiplicity model.Comment: Final paper version accepted for publication in Phys. Rev. Lett. New
version includes comparisons to a constituent quark glauber mode
Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in at GeV
We report the observation of transverse polarization-dependent azimuthal
correlations in charged pion pair production with the STAR experiment in
collisions at RHIC. These correlations directly probe quark
transversity distributions. We measure signals in excess of five standard
deviations at high transverse momenta, at high pseudorapidities eta>0.5, and
for pair masses around the mass of the rho-meson. This is the first direct
transversity measurement in p+p collisions. Comparing the results to data from
lepton-nucleon scattering will test the universality of these spin-dependent
quantities.Comment: 11 pages, 5 figures, 15 tables. Submitted to PR
Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at and 200 GeV
The acceptance-corrected dielectron excess mass spectra, where the known
hadronic sources have been subtracted from the inclusive dielectron mass
spectra, are reported for the first time at mid-rapidity in
minimum-bias Au+Au collisions at = 19.6 and 200 GeV. The excess
mass spectra are consistently described by a model calculation with a broadened
spectral function for GeV/. The integrated
dielectron excess yield at = 19.6 GeV for
GeV/, normalized to the charged particle multiplicity at mid-rapidity, has
a value similar to that in In+In collisions at = 17.3 GeV. For
= 200 GeV, the normalized excess yield in central collisions is
higher than that at = 17.3 GeV and increases from peripheral to
central collisions. These measurements indicate that the lifetime of the hot,
dense medium created in central Au+Au collisions at = 200 GeV
is longer than those in peripheral collisions and at lower energies.Comment: 9 pages, 6 figure
Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in 200 GeV Au+Au Collisions
A data-driven method was applied to measurements of Au+Au collisions at
200 GeV made with the STAR detector at RHIC to isolate
pseudorapidity distance -dependent and -independent
correlations by using two- and four-particle azimuthal cumulant measurements.
We identified a component of the correlation that is -independent,
which is likely dominated by anisotropic flow and flow fluctuations. It was
also found to be independent of within the measured range of
pseudorapidity . The relative flow fluctuation was found to be for particles of transverse momentum
less than GeV/. The -dependent part may be attributed to
nonflow correlations, and is found to be relative to the
flow of the measured second harmonic cumulant at
- …